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Abstract

We present a time series analysis of confidentiality degradation in encrypted search systems
subject to known-plaintext attacks. By modeling the adversary’s accuracy as a time-dependent
confidentiality measure, we develop forecasting models based on ARIMA and dynamic regression
techniques. Our analysis provides quantitative estimates for how quickly adversary knowledge
accumulates, enabling organizations to establish data-driven policies for password rotation and
system reinitialization that maintain specified confidentiality thresholds.
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1 Introduction

Cloud computing enables organizations to store and process data on remote infrastructure, but
this convenience comes at the cost of reduced control over data confidentiality. Even when data is
encrypted at rest, system administrators and other insiders pose a significant threat. This tension
between utility and security has motivated the development of encrypted search systems.

Encrypted search attempts to resolve the fundamental trade-off between confidentiality and usability
by enabling authorized users to query encrypted data without revealing query contents to untrusted
parties.

Definition 1. Encrypted search allows authorized search agents to investigate the presence of spe-
cific search terms in a confidential target data set, such as a database of encrypted documents,
while the contents—especially the meaning of the target data set and search terms—are hidden from
unauthorized personnel, including the system administrators of a cloud server.

Essentially, encrypted search enables oblivious queries where users can search confidential databases
on untrusted systems without revealing their information needs (and in more sophisticated systems,
without revealing which documents matched the query).

We define the adversary as any untrusted party with access to the remote system where confidential
data is stored.1

1System administrators are typical examples.
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However, perfect confidentiality is not achievable in practice. Encrypted search systems leak infor-
mation through access patterns, query frequencies, and other side channels. In this paper, we focus
on an adversary who attempts to infer the plaintext queries by analyzing the history of encrypted
searches using a known-plaintext attack.

We quantify confidentiality using the proportion of queries the adversary successfully decodes. Since
confidentiality degrades as the adversary observes more queries, we model this degradation as a time
series process.

Time series analysis enables us to forecast future confidentiality levels, answering critical security
questions such as: How long until confidentiality falls below an acceptable threshold? When should
passwords be reset to maintain a minimum confidentiality level?

These forecasts support data-driven security policies. Password resets impose usability and security
costs, but delaying them risks unacceptable confidentiality loss. Our analysis provides quantitative
guidance for balancing these competing concerns.

2 Related work

Searchable encryption was introduced by Song, Wagner, and Perrig [5], who developed practical
techniques for searching on encrypted data while preserving query confidentiality. Their founda-
tional work demonstrated that encrypted search systems could achieve practical performance, but
acknowledged that such systems necessarily leak some information through access patterns and
query frequencies.

Subsequent research has shown that these information leakages enable significant attacks. Islam
et al. [3] demonstrated access pattern disclosure attacks that exploit the deterministic nature of
encrypted search schemes. By observing which encrypted documents match encrypted queries, an
adversary can infer plaintext queries even without directly observing query contents. Their attack
model closely parallels our known-plaintext attack framework: both exploit frequency analysis and
co-occurrence patterns in the query stream to recover plaintext information. While Islam et al.
focused on one-time attacks, our work extends this perspective by modeling confidentiality degra-
dation as a time series process, enabling forecasts of when adversary knowledge will violate security
thresholds.

3 Encrypted search model

In information retrieval, a search agent submits a query representing an information need to an
information system, which responds with relevant objects (e.g., documents).

We make the following simplifying assumptions about the query model and encryption scheme.

Assumption 1. Queries consist of sequences of keywords (a bag-of-words model).

Assumption 2. The encrypted search system uses a deterministic encryption scheme where each
plaintext keyword maps to a unique encrypted token (trapdoor).

More formally, we define the encryption function as

h: X 7→ Y , (1)
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where X is the set of plaintext search keywords and Y is the set of encrypted tokens (trapdoors).

Definition 2 (Trapdoor). A trapdoor is a cryptographic token generated by applying h to a plaintext
keyword, enabling the untrusted system to perform searches without learning the plaintext.

Since h is injective, there exists an inverse function

g : Y 7→ X (2)

such that x = g(h(x)) for every x ∈ X.

Definition 3. The adversary can observe the sequence of encrypted queries (trapdoors) submitted
by authorized search agents but does not initially know g.

The security objective is to prevent the adversary from learning g and thus decoding the queries.

We now formalize the time series notation. Following standard conventions, we use uppercase letters
for random variables and lowercase for realizations. A time series {Yt} denotes a sequence of random
variables indexed by time t, with {yt} denoting an observed realization.

The plaintext queries form a discrete-time, discrete-valued time series {xt} where xt ∈ X is the t-th
keyword submitted by search agents. The adversary cannot observe {xt} directly.

Definition 4. The encrypted query sequence {ct} is defined by

ct = h(xt) ,

where ct ∈ Y is the trapdoor corresponding to plaintext xt.

We model queries probabilistically as a random process {Xt} with distribution determined by a
language model:

Pr(Xt = xt|Xt−1 = xt−1, . . . , X1 = x1). (3)

This formulation assumes queries depend only on query history, not on external factors such as user
identity or time of day. We discuss extensions to include such covariates in Section 8.

The encrypted query sequence is then modeled as the random process {Ct} where Ct = h(Xt).

4 Threat model: known-plaintext attack

The adversary observes the encrypted query sequence {ct} and attempts to recover the plaintext
sequence {xt} by learning the decryption function g. We focus on frequency-based cryptanalysis,
specifically known-plaintext attacks. Side-channel information is not considered in this work; we
discuss potential extensions in Section 8.

Assumption 3. The decryption function g is unknown to the adversary.

The adversary’s strategy is to estimate g by exploiting statistical properties of natural language.
Given observed ciphers {c1, . . . , cT }, a maximum likelihood estimator of g is

ĝ = argmaxg∈G Pr(X1 = g(c1))
T∏
t=2

Pr(Xt = g(ct)|Xt−1 = g(ct−1), . . . , X1 = g(c1)) , (4)
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where G denotes the set of all injective functions from Y to X.

Perfect confidentiality would require that all plaintexts be equally likely, making them indistinguish-
able to the adversary. In this case, ĝ would be inconsistent. However, natural language exhibits
strong statistical regularities (word frequencies follow Zipf’s law, co-occurrence patterns are non-
uniform), enabling the adversary to learn something about {xt} from {ct}.

In practice, the adversary does not know the true distribution of {Xt} but can approximate it using
external corpora.

Assumption 4. The adversary has access to an approximate language model P̂r(·) for the query
distribution.

Definition 5. In a known-plaintext attack, the adversary estimates g by solving the MLE in Equa-
tion (4) with the true distribution replaced by the approximate distribution P̂r(·).

The quality of the attack depends on how well P̂r(·) approximates the true query distribution.

5 Confidentiality measure

We quantify confidentiality degradation using the adversary’s decryption accuracy.

Definition 6. The confidentiality measure {πt} is defined as the fraction of ciphers correctly decoded
by the adversary using ĝ:

πt =
δt
Nt

, (5)

where

δt =
Nt∑
t′=1

1[g(ct′) = ĝ(ct′)] . (6)

Here N is a sampling parameter: we compute one measurement of πt after every N queries.

The measure πt represents the proportion of the entire query history that the adversary can decode
at time t. Note that πt increases as the adversary observes more queries and refines ĝ.

5.1 Security threshold and password rotation

Suppose we require that confidentiality remain above a threshold π∗ ∈ (0, 1). We define the critical
time T ∗ as

T ∗ = min{T : πT > π∗} . (7)

At time T ∗, the adversary can decode more than proportion π∗ of queries, violating the security
requirement.

To maintain the threshold, we must reinitialize the encryption before reaching T ∗. This typically
involves changing the cryptographic key (e.g., requiring password changes), which generates a new
encryption function h′ and resets the adversary’s knowledge. The adversary must then restart the
attack process with ĝ′.

Forecasting {πt} enables proactive security policies: we can predict when πt will exceed π∗ and
schedule reinitialization accordingly.
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5.2 Forecasting model

Since {ct} is random, the confidentiality measure {πt} is also random. We model it as a stochastic
process {Πt}.

Given observations π1, . . . , πT , the h-step ahead forecast distribution is

ΠT+h|T ≡ (ΠT+h | Π1 = π1, . . . ,ΠT = πT ) .

The forecast mean is denoted E[ΠT+h|T ].

Our goal is to estimate the forecast distribution from observed data. In practice, we estimate the
forecast mean π̂T+h|T and construct prediction intervals using the estimated forecast variance.

6 Data description

We analyze simulated data to evaluate forecasting models for {πt}. The simulation generates real-
istic query sequences and models an adversary conducting a known-plaintext attack.

6.1 Data generation

The simulation proceeds in two phases: query generation and attack simulation.

6.1.0.1 Query generation. We first generate a synthetic plaintext query sequence {xt}:

1. A bigram language model is estimated from a text corpus. (The specific corpus has been lost;
it was a general English text collection.)

2. Plaintext queries {xt} are sampled from this bigram model.

3. Each plaintext xt is encrypted via a cryptographic hash function to produce ciphers ct = h(xt).

6.1.0.2 Attack simulation. Given the cipher sequence {ct}, we simulate an adversary attempt-
ing to learn g:

1. After every N = 50 ciphers, the adversary updates its estimate ĝ by solving a unigram MLE:

ĝT = argmaxg∈G

T∏
t=1

P̂r(Xt = g(ct)) .

Note that the adversary uses a unigram model even though queries were generated from a
bigram model. This reflects information loss in practice.

2. The adversary’s language model P̂r(·) is estimated from a different corpus than the one used
to generate {xt}. This mismatch makes ĝT inconsistent (it does not converge to g as T → ∞),
reflecting realistic conditions where the adversary’s knowledge is imperfect.

3. The confidentiality measure πt is computed using the current estimate ĝt.

This setup models a realistic scenario where the adversary has approximate but not perfect knowl-
edge of the query distribution.

6



7 Time series analysis of {πt}

The adversary’s accuracy exhibits temporal dependence: accuracy at time t is correlated with recent
values πt−1, πt−2, . . ., with correlation typically decreasing as lag increases. This autocorrelation
structure motivates time series methods for forecasting.

We partition the data into training and test sets. The training set is used for model fitting and the
test set is held out for evaluation. Sample training data:

## [1] 0.358159 0.351208 0.347271 0.346403 0.352666 0.350445

7.1 Visualization and stationary transformations

ARIMA models assume stationarity: constant mean, constant variance, and autocorrelation that
depends only on lag. We must transform {πt} to approximate stationarity before fitting ARIMA
models.

Figure 1 plots the training data. The series exhibits an upward trend, indicating non-stationarity
in the mean.

Plot of training partition of {πt}

t
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Figure 1: Time series plot of {πt} showing non-stationary behavior.

Figure 2 shows the sample ACF and PACF. The slow decay in the ACF confirms non-stationarity.

The variance appears reasonably constant, so variance-stabilizing transformations (e.g., logarithm)
are unnecessary. To remove the trend, we apply differencing: the d-th order differenced series is
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Figure 2: Sample ACF and PACF showing strong autocorrelation.
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Figure 3: First-differenced series ∇{πt}.
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denoted ∇d{πt}. Differencing is a flexible, non-parametric approach that adapts to complex trend
patterns without assuming a specific functional form.

Figure 3 shows the differenced series ∇{πt}. The trend is removed, values fluctuate around zero,
and variance appears constant. This suggests stationarity.

We apply the augmented Dickey-Fuller test [2] to formally test for stationarity:

## Augmented Dickey-Fuller Test
## Dickey-Fuller = -20.37, Lag order = 15, p-value = 0.01
## alternative hypothesis: stationary

The p-value of 0.01 provides strong evidence against the null hypothesis of non-stationarity. We
conclude that ∇{πt} is approximately stationary and proceed with ARIMA modeling.

7.2 ARIMA model selection

Our goal is to build a parsimonious forecasting model. Following Occam’s razor, simpler models
with fewer parameters are preferred: they generalize better to unseen data and avoid overfitting [1].
However, the model must be sufficiently complex to capture the data’s structure. This is the classical
bias-variance tradeoff.

ARIMA(p, d, q) models are parameterized by three integers: p (autoregressive order), d (differencing
order), and q (moving average order). We seek small values of p, d, and q that adequately fit the
data. While information criteria like AIC can guide selection, we also examine diagnostic plots.

Figure 4 shows the ACF and PACF of ∇{πt}.

The ACF cuts off after lag 1, and the PACF decays exponentially, suggesting an MA(1) process for
∇{πt} (i.e., IMA(1,1) for {πt}).

The extended ACF (EACF) table provides additional guidance:

## AR/MA
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 x o o o o o o x x x o o o o
## 1 x x o o o o x o o o o o o o
## 2 x x x o o o x o o o o o o o
## 3 x x x x o o o o o o o o o o
## 4 x x x x x o o o o o o o o o
## 5 x x x x x x o o o o o o o o
## 6 x x x x x o x o o o o o o o
## 7 x x x x x x x o o o o o o o

The EACF suggests candidate models ARMA(0, 1), ARMA(0, 2), and ARMA(1, 2) for ∇{πt}. We
evaluate all three.
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Figure 4: Sample ACF and PACF of the differenced series ∇{πt}.

7.3 Model construction and evaluation

Model adequacy is assessed through residual diagnostics. A well-specified model produces residuals
{et} that behave like white noise:

1. Uncorrelated: If residuals are correlated, the model has not captured all temporal structure
and can be improved.

2. Zero mean: Non-zero mean residuals indicate systematic bias in forecasts.

3. Constant variance: Heteroscedasticity may require variance modeling.

7.3.1 IMA(1,1)

We first fit ARIMA(0, 1, 1), the simplest candidate model. The estimated parameter is:

## ma1
## -0.5705635

Figure 5 shows residual diagnostics.

The histogram appears symmetric around zero, but the Q-Q plot shows deviations from normality.
More critically, the ACF and PACF exhibit significant residual autocorrelation, indicating the model
has not captured all temporal dependence. We reject this model.
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Figure 5: Residual diagnostics for ARIMA(0, 1, 1).

7.3.2 IMA(1,2)

Next we fit ARIMA(0, 1, 2). The estimated parameters are:

## ma1 ma2
## -0.55254743 -0.04124893

Figure 6 shows residual diagnostics.

As before, the histogram is symmetric, and the Q-Q plot indicates non-normality (though normality
is not strictly required for forecasting). However, the ACF and PACF again show significant residual
correlation. This model is also inadequate. We reject it.

7.3.3 ARIMA(1,1,2)

Finally, we fit ARIMA(1, 1, 2). The estimated parameters are:

## ar1 ma1 ma2
## 0.8839643 -1.4423574 0.4689439

Figure 7 shows residual diagnostics.
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Figure 6: Residual diagnostics for ARIMA(0, 1, 2).
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Figure 7: Residual diagnostics for ARIMA(1, 1, 2).
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Again, the histogram is symmetric and the Q-Q plot shows non-normality. However, the ACF and
PACF appear acceptable: no significant residual autocorrelation is evident.

We apply the Ljung-Box test (lag 10) to formally assess the white noise hypothesis:

## Box-Ljung test
## data: model.3$residuals
## X-squared = 10.333, df = 7, p-value = 0.1705

The null hypothesis is that residuals are white noise. The p-value of 0.171 provides substantial
support for this hypothesis.

We select ARIMA(1, 1, 2) as our model. Since this is the only model passing diagnostics, formal
comparison via AIC is unnecessary.

The fitted model summary is:

## ARIMA(1,1,2)
##
## Coefficients:
## ar1 ma1 ma2
## 0.8840 -1.4424 0.4689
## s.e. 0.0276 0.0338 0.0266
##
## sigma^2 estimated as 1.088e-05: log likelihood=17177.64
## AIC=-34347.27 AICc=-34347.26 BIC=-34322.1

In operator form, the model is

(1− 0.884B)∇Πt = (1 + 1.442B−0.469B2)et , (8)

which factors as
(1− 0.884B)∇Πt = (1− 0.273B)(1 + 1.715B)et , (9)

where et ∼ WN(0, σ2) with σ = 0.0033.

7.4 Forecasting

We now use the fitted ARIMA(1, 1, 2) model to forecast future confidentiality degradation. At time
T = 5000, we compute forecasts π̂T+h|T for h = 1, . . . , 1000.

Figure 8 shows the forecast along with 80% prediction intervals.

The held-out test data falls within the 80% prediction interval for most time points, suggesting
reasonable forecast performance. However, the prediction intervals are quite wide. We hypothe-
size this reflects model misspecification: the purely autoregressive structure may not capture the
underlying process adequately. Theoretically, πt should approach an asymptotic limit as the adver-
sary’s knowledge saturates, but the ARIMA model does not incorporate this constraint. We explore
theory-driven models in the next section.
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Figure 8: ARIMA(1, 1, 2) forecasts with training and test data.

7.5 Incorporating a priori information

We now incorporate domain knowledge about the confidentiality measure. Assuming the plaintext
distribution and encryption function remain fixed, we expect:

1. πt ∈ [0, 1] (it is a proportion).

2. πt should be monotonically increasing: observing more queries cannot decrease the adversary’s
accumulated knowledge.

3. πt should approach an asymptotic limit c ≤ 1 as the adversary’s knowledge saturates.

These properties suggest models like Gompertz growth curves or scaled CDFs. For simplicity, we
approximate the trend with a logarithmic function:

πt = β0 + β1 log t . (10)

While this lacks an asymptote, it provides a reasonable approximation over finite time horizons.

We model deviations from this trend as ARIMA errors:

Πt = β0 + β1 log t+ ηt , (11)

where ηt ∼ ARIMA(p, d, q).
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Note that this formulation (regression with ARIMA errors) differs from standard regression. As
Hyndman [4] notes, the regression coefficients condition on lagged responses, complicating interpre-
tation. Nevertheless, this model can improve forecasts by capturing both the deterministic trend
and stochastic dynamics.

We fit this model to the data:

## Regression with ARIMA(1,1,2) errors
##
## Coefficients:
## ar1 ma1 ma2 xreg
## 0.8521 -1.4012 0.4355 0.0292
## s.e. 0.0234 0.0277 0.0211 0.0202
##
## sigma^2 estimated as 6.828e-06: log likelihood=45279.87
## AIC=-90549.73 AICc=-90549.73 BIC=-90513.68

This uses ARIMA(1, 1, 2) errors with a logarithmic trend term. (We also tested ARIMA(2, 1, 2),
which yielded tighter prediction intervals but was not substantially better.)

Figure 9 shows residual diagnostics.
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Figure 9: Residual diagnostics for regression with ARIMA(1, 1, 2) errors.

The histogram is symmetric, the Q-Q plot shows non-normality, and the ACF and PACF appear
acceptable. The Ljung-Box test (lag 10):
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## Box-Ljung test
## data: reg_model$residuals
## X-squared = 10.279, df = 6, p-value = 0.1134

At the 5% significance level, the model is marginally adequate (p = 0.113). The fitted model is

Π̂t = 0.029 log t+ ηt , (12)

where ηt ∼ ARIMA(1, 1, 2) with coefficients as above and et ∼ WN(0, σ2) with σ = 0.0026.

Figure 10 shows forecasts from this model along with training and test data.
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Figure 10: Forecasts from regression with ARIMA errors model.

The forecasts extend much further into the future and follow the gradual upward trend more faith-
fully than the pure ARIMA model.

For comparison, we also fit an ARIMA(1, 1, 2) model with drift:

## ar1 ma1 ma2 drift
## 8.472755e-01 -1.396547e+00 4.324823e-01 4.695287e-06

The drift coefficient is small but positive. Over long horizons, this accumulates to produce an
upward trend (Figure 11).

However, ARIMA with drift implies linear growth, which is theoretically inappropriate: πt must
remain bounded in [0, 1]. The logarithmic regression model better respects this constraint.
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Figure 11: Forecasts from ARIMA(1, 1, 2) with drift.

8 Future work: incorporating covariates

Our forecasting models use only lagged values of πt to predict future confidentiality. This approach
captures temporal patterns but ignores potential covariates that may affect adversary performance.
Incorporating such covariates could improve forecast accuracy and provide insights into factors
driving confidentiality degradation.

8.1 Information-theoretic covariates

The adversary learns from observing ciphers {ct}, but not all observations are equally informative.
We could model the information content of each observation explicitly.

Define the information content of observation t as

It = − log2 Pr(g(ct)) , (13)

measured in bits. Observations with low probability under the adversary’s model carry more infor-
mation.

Lagged values of It could be used as predictors in a dynamic regression:

Πt = β0 + β1It−1 + β2It−2 + · · ·+ ηt . (14)

Alternatively, cumulative information (empirical entropy) could serve as a covariate. This would
allow the model to adapt to the informativeness of recent queries, potentially tightening prediction
intervals during periods of rapid learning.
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8.2 Side-channel information

Beyond the cipher sequence, the adversary may obtain side-channel information. For example:

• Timing information revealing query complexity

• Access patterns indicating document relevance

• External knowledge narrowing the plaintext space

Such events could be modeled as intervention variables or structural breaks. For instance, if the
adversary learns that cipher c′ maps to a subset W ⊂ X, this constitutes an information gain
equivalent to reducing the entropy of the plaintext distribution. Dynamic regression could incorpo-
rate indicator variables for such events, allowing the model to capture sudden jumps in adversary
accuracy.

9 Conclusion

We have developed time series models to forecast confidentiality degradation in encrypted search
systems under known-plaintext attacks. Our analysis demonstrates that standard ARIMA models
can capture the temporal dynamics of adversary accuracy, while dynamic regression with logarithmic
trend terms better incorporates domain knowledge about the theoretical behavior of learning curves.

9.1 Model comparison

The pure ARIMA(1, 1, 2) model provides reasonable short-term forecasts and has the virtue of
simplicity. However, it lacks theoretical grounding: ARIMA with drift predicts unbounded growth,
eventually yielding impossible values (πt > 1).

The logarithmic regression model (πt = β0 + β1 log t + ηt) better reflects the expected learning
dynamics. While it also lacks an asymptote (eventually predicting πt > 1 after approximately
1.5 × 1015 observations), this occurs far beyond any practical time horizon. The logarithmic form
approximates the saturation behavior of adversary learning reasonably well over finite horizons.

9.2 Security policy implications

Consider a security threshold π∗ = 0.44. Using our models, we estimate the critical time T ∗ at
which confidentiality falls below this threshold. Figure 12 shows T̂ ∗ as a function of π∗.

For π∗ = 0.44, we estimate T̂ ∗ ≈ 20000, suggesting password reset should occur before 20,000
queries to maintain the threshold.

However, the 80% prediction intervals are substantially more conservative, sometimes recommending
near-immediate password reset. This conservatism limits practical utility: overly frequent resets
impose costs on users and administrators.
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Figure 12: Estimated critical time T̂ ∗ versus security threshold π∗.

9.3 Limitations and future directions

The wide prediction intervals indicate substantial forecast uncertainty. This may stem from model
misspecification or from genuine stochasticity in the adversary’s learning process. As discussed
in Section 8, incorporating covariates (information content of queries, side-channel events) could
reduce uncertainty and improve forecast accuracy.

Alternative model formulations (Gompertz curves, logistic growth models) that explicitly impose
asymptotic bounds merit investigation. Such models would better respect the theoretical constraint
πt ∈ [0, 1] and might yield more realistic long-term forecasts.

Despite these limitations, our analysis demonstrates that time series methods can provide quanti-
tative guidance for encrypted search security policies, enabling data-driven decisions about system
reinitialization timing.
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