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Abstract

We perform a time series analysis of the confidentiality of an Encrypted search system with
respec to a theoretical adversary who employs a known-plaintext attack on the search agents’
Encrypted searches. We derive an estimator of the forecast distribution on the confidentiality
measure, which may be used to inform policies such as when and how frequently a password
change may be called for to maintain a minimum level of confidentiality.
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1 Introduction

In cloud computing, it is tempting to store confidential data on (untrusted) cloud storage providers.
However, a system administrator may be able to compromise the confidentiality of the data,
threatening to prevent further adoption of cloud computing and electronic information retrieval in
general.

The primary challenge is a trade-off problem between confidentiality and usability of the data
stored on untrusted systems. Encrypted Search attempts to resolve this trade-off problem.

Definition 1. Encrypted Search allows authorized search agents to investigate presence of specific search
terms in a confidential target data set, such as a database of encrypted documents, while the contents,
especially the meaning of the target data set and search terms, are hidden from any unauthorized personnel,
including the system administrators of a cloud server.

Essentially, Encrypted Search enables oblivous search. For instance, a user may search a confidential
database stored on an untrusted remote system without other parties being able to determine the
information need of the user searched (and on more sophisticated systems, they are also unable to
determine which documents were relevant to the information need).

We denote any untrusted party that has full access to the untrusted remote system (where the
confidential data is stored) the adversary.1

Despite the potential of Encrypted Search, perfect confidentiality is not theoretically possible. There
are many ways confidentiality may be compromised. In this paper, we consider an adversary
whose primary objective is to comprehend the confidential information needs of the search agents
by analyzing their history of encrypted queries.

A simple measure of confidentiality is given by the proportion of queries the adversary is able to
comprehend. We consider an adversary that employs a known-plaintext attack. However, since the
confidentiality is a function of the history of queries, different histories will result in different levels
of confidentiality over time.

We apply time series analysis to estimate the forecast distribution of the confidentiality measure.
The forecast distribution provides the framework to estimate important security-related questions
such as “what will our mean confidentiality six months from now be?”

We are interested in reasonably medium-term forecasts so that we can plan accordingly for the
future, e.g., determining how frequently passwords should be reset to try to maintain a base level
of confidentiality. Resetting them too frequently poses an independent set of problems, both from a
security and usability standpoint, but failing to reset them when the risk of being compromised is
too high defeats the central purpose of Encrypted search.

2 Encrypted search model

An information retrieval process begins when a search agent submits a query to an information
system, where a query represents an information need. In response, the information system returns a

1A system administrator being a typical example.
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set of relevant objects, such as documents, that satisfy the information need.

An Encrypted Search system may support many different kinds of queries, but we make the following
simplifying assumption.

Assumption 1. The query model is a sequence-of-words.

The adversary is given by the following definition.

Definition 2. The adversary is an untrusted agent that is able to observe the sequence of queries submitted
by authorized search agent.

The objective of the Encrypted Search system is to prevent the adversary from being able to compre-
hend the sequence of queries.

Definition 3. A hidden query represents a confidential information need of an authorized search agent
that is suppose to be incomprehensible to the adversary.

The primary means by which Encrypted Search is enabled is by the use of cryptographic trapdoors as
given by the following definition.

Definition 4 (Trapdoor). Search agents map plaintext search keys to some cryptographic hash, denoted
trapdoors.

A trapdoor for a plaintext search key is necessary to allow an untrusted Encrypted Search system to
look for the key in a corresponding confidential data set.

Assumption 2. The Encrypted Search system uses a simple substitution cipher in which each search key
is mapped to a unique trapdoor signature.

The simple substitution cipher is denoted by

h : X 7→ Y , (1)

where X is the set of plaintext search keys and Y is the set of trapdoors.

Since h is one-to-one, it is possible to undo the substitution cipher by some function denoted by

g : Y 7→ X (2)

such that
x = g(h(x))

for every x ∈ X.

In a time series, we have one entitty and T measurements of it over time. A random time series is a
sequence of random variables

{Y1, Y2, . . . , YT},

typically denoted by {Yt} where t is the time index, which can continuous or discrete. MoreThe
time index is more appro

The measurements are d dimensional and may be continuous, discrete, or some mixture. Frequently
d = 1, which we denote a univariate time series, and the measurements are continuous.

We use upper-case to denote random variables and lower-case to denote realizations, thus Yt is a
random value and yt is the realization of Yt.
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Thus, a realization of the time series {Yt} is given by denoted by {yt}.

The time series of plaintext keyword searches submitted by the search agents is denoted by {xt}. It
is a d = 1 dimensional time series with a discrete time index and a discrete response.

The adversary may may directly observe {xt}. Instead, he observes a time series of ciphers.

Definition 5. The cipher {ct} is a discrete time and discrete response time series defined as

ct = h(xt).

Since the time series of plaintext is a priori non-deterministic, we model it as a random time series
{Xt} such that

Pr(Xj = xj|X1 = x1, . . . , Xj−1 = xj−1). (3)

That is to say, our plaintext language model does not incorporate other kinds of information, such
as who the search agent is or what time of day it is. In section 7, we consider extensiosn of the
model.

Since {ct} is a function of {xt}, we may model the ciphers as a random time series {Ct} where
Cj = h(Xj).

3 Threat model: known-plaintext attack

The primary source of information is given by the observable time series of ciphers {ct}, which is
induced by the unobserved time series of plaintext {xt}.

Other potential sources of information, such as side-channel information, is not included in the
model we consider in this paper. See section 7 for some preliminary thoughts on this expanded
topic.

In the threat model described in section 3, the adversary is interested in estimating {xt}. However,
the adversary is only able to observe {ct}. Thus, the adversary’s objective is to infer the plaintext
from the ciphers using frequency analysis attacks, in particular a known-plaintext attack.

In a known-plaintext attack, the objective of the adversary is to learn how to undo the substitution
cipher h with g.

Assumption 3. The inverse substitition cipher g is not known to the adversary.

A maximum likelihood estimator of g is given by

ĝ = arg maxg∈G Pr(X1 = g(c1))
T

∏
t=2

Pr(Xt = g(ct)|Xt−1 = g(ct−1), . . . , X1 = g(c1))

where G is the set of all possible mapping functions from ciphers Y to plaintexts X.

If two plaintexts x, x′ ∈ X, x 6= x′, may be exchanged without changing the probability of {xt}, then
they are indistinguishable and ĝ is inconsistent. However, the adversary does not need to be perfect
for the confidentiality measure to be compromised. If some of the plaintexts are inexchangeable,
then the adversary may learn something about {xt} by observing {ct}.

The greater the uniformity of {Xt} the greater the variance of ĝ. At the limit of maximum uniformity,
where every pair of plaintext is exchangeable, the adversary can learn nothing about {xt} by
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observing {ct}. Natural languages have a high degree of non-uniformity and so the primary
concern of the adversary is the divergence between the true distribution and the known-plaintext
distribution.

Assumption 4. The adversary knows some approximation of {Xt}.

The known-plaintext distribution may be used to solve an approximation of the MLE ĝ.

Definition 6. In a known-plaintext attack, the adversary substitutes the unknown true distribution with
the known-plaintext distribution and solves the MLE under this substituted distribution.

4 Confidentiality measure

We are interested in measuring the degree of confidentiality as given by the following definition.

Definition 7. Given a time series {ct′}, the confidentiality measure is a time series {πt} defined as the
fraction of ciphers in {ct′} that the adversary successfully maps to plaintext where t′ = Nt. That is,

πt =
δt

Nt
, (4)

where

δt =
Nt

∑
t′=1

[g(ct′) = ĝ(ct′)] . (5)

Note that N denotes the fact that we take one measurement of the confidentiality every time a
multiple of N ciphers are observed.

The measure πt can be understood as the marginal probability that the adversary is able to decode
an incoming cipher to plaintext at around time t. However, far more revealingly, the adversary
may go back through the history of ciphers and decode proportion πt to plaintext.

If we specify that π∗ is the minimum confidentiality measure we wish to maintain, then it is
essential that we stop generating {ct} at or before time T∗ where

T∗ = arg minT πT > π∗.

That is, we stop generating {ct′} before the amount of information in it is sufficient for the adversary
to decode more than proportion π∗ of the data. We do not need to stop Encrypted search queries
at time T∗, we only need to change the cipher, i.e., substitute the mapping function h that maps
plaintexts to ciphers with some other mapping function, which is typically done by requiring users
to change passwords periodically. This is where forecasting {πt} plays a central role.

4.1 Forecasting model

As a function of a random time series {Ct′}, we may model πt as being generated by the random time
series {Πt}. If πt is not known, i.e., Πt has not been observed, then Πt is a probability distribution
on the measure at time t. If π1, π2, . . . , πT is given, then ΠT+h|T is a conditional distribution2 known
as the h-step forecast distribution at time T whose expectation is denoted by πT+h|T.

2ΠT+h given Π1 = π1, . . . , ΠT = πT .
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Our primary interest is in forecasting an observed time series {πt}, e.g., if we observe
{π1, π2, . . . , πT}, we wish to estimate the mean of the h-step forecast πT+h|T. Since πT+h|T is not
known, we seek an estimator π̂T+h|T.

5 Data description

The accuracy {πt} of the adversary is the single entity we are observing and we have T measure-
ments of it over logical time.

The confidentiality data {πt} depends upon two other time series, the plaintext (keyword searches)
{xt} and the ciphers {ct}, which Alex Towell generated in 2016 using the following steps:

1. The parameters of a Bigram language model were estimated from a large corpus of plaintext.
(The source of the particular corpus used has been lost.)

2. The estimated Bigram language model was conditionally sampled from to generate plaintexts
{xt}.

3. Each plaintext xt was cryptographically hashed to a cipher ct = h(x) to generate ciphers {ct}.

Note that {xt} and {ct} are not the primary time series of interest in our analysis. Rather, our
primary interest is in the confidentiality measures {πt}. To generate this time series, the following
steps were taken:

1. The function g that maps ciphers to plaintext is estimated after every N = 50 observations
of the cipher time series using a MLE under a unigram language model (some information
in the bigram model is not being used by the estimator, which reduces its efficiency) on a
different corpus judged to be similiar to the one used to generate {xt}. Thus, the unigram
MLE of g at time T is given by

ĝT = arg maxg∈G

T

∏
t=1

P̂r(Xt = g(ct)).

Note that ĝT is inconsistent since it does not converge in probability to g as a consequence of
the adversary’s estimation of Pr(Xt) with P̂r(Xt).

This inconsistency was motivated out of a desire to be more realistic, since an adversary who
is performing the known-plaintext attack cannot in practice know the underlying distribution
of {xt} used to generate the keyword searches.

2. The confidentiality measure at time t, denoted by πt, is computed using ĝt.

6 Time series analysis of {πt}
It seems clear that the adversary’s accuracy at a particular time will be correlated with lagged
(previous) values of its accuracy and the closer in time they are the more heavily correlated they
will generally be (barring exceptions like seasonality).

We partition the data into a training set and a test set. We will not look at the test set until later
when we evaluate the model. Here is a quick glimpse of the training set data:

## [1] 0.358159 0.351208 0.347271 0.346403 0.352666 0.350445
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6.1 Visualization and stationary transformations

If the time series data can be transformed to meet the stationary conditions, then the ARIMA model
for the (correlated) residuals is generally a reasonable choice. A stationary time series is given by:

1. The mean is not a function of time.

2. The variance is constant.

3. The autocorrelation is a function of lag rather than time.

A plot of the training partition of {πt} is shown in figure 1.

Plot of training partition of {πt}

t
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Figure 1: A non-stationary time series plot.

It appears non-stationary. A plot of the sample ACF and PACF are shown in figure 2.

We see that the ACF indicates that {πt} has significant autocorrelation. While this is clearly non-
stationary, the variance seems constant and thus a transformation to make the variance more
uniform, such as a log-transformation, seems unnecessary.

Since there is not necessarily an obvious pattern in the data, we will avoid the use of procedures like
fitting a regression model (for detrending) and instead try some order of differencing. Differencing
is a non-parametric approach that can often transform a non-stationary time series into a stationary
one, where the d-th difference of {πt} is denoted by ∇d{πt}. Moreover, since it is non-parametric,
differencing has the added benefit of being able to dynamically respond to changes in the data,
unlike with regression which treats the trend as deterministic.

In figure 3, we plot the differenced process ∇{πt}. We see that the trend has been removed, the
values are centered around zero, and the variance is constant. We believe this may be stationary.
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Figure 2: Highly correlated sample ACF and PACF.

Plot of ∇{πt}
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Figure 3: Time plots of ∇{πt}.
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We perform the augmented Dickey-Fuller test[2] as a more objective measure.

## Augmented Dickey-Fuller Test
## Dickey-Fuller = -20.37, Lag order = 15, p-value = 0.01
## alternative hypothesis: stationary

The p-value of the Dickey-Fuller hypothesis test is less than 0.01, which we consider to be very
strong evidence against the null hypothesis of non-stationary data. Bolstered by this test, we
proceed with trying to find an ARIMA model for the residuals.

6.2 ARIMA model selection

There are perhaps three primary reasons we would want to infer a general model for {πt}: pre-
scription, description, and in our case, prediction.

Guided by the principle of parsimony, we have a bias for simpler models, i.e., Occam’s razor. As
justification for this bias, consider the following. Assume there is some unknown process M that
generated data {πt}. If we have parametric model M′ with many degrees of freedom (dimension of
parameter space), we may find parameters for it that fit it to {πt} with a very small sum of squared
residuals.

However, if M′ is unnecessarily complex, it is unlikely to generalize very well, i.e., on new data M
and M′ may diverge significantly. In this case, we say that M′ is overfitted to the observed data
{πt}. Of course, if a simpler model cannot even sufficiently model the observed data {πt}, it is
hard to justify as an approximation of M. Thus, we have a variance-bias trade-off[1].

Since ARIMA models are parameterized by p, d, and q, which respectively specify the order of
the autoregression component, the order of the difference, and the order of the moving average
component, we have a bias for ARIMA models with relatively small p, d, and q. Note that there are
many heuristics that model this bias, such as the Akaike information criterion (AIC), but we will
decide upon a subset of candidate models that leans heavily on a more hands-on analysis.

A plot of sample ACF and PACF of the differenced time series ∇{πt} is shown in figure 4.

Since the ACF cuts off after lag 1 and the PACF decays exponentially, we speculate that∇{πt}may
be an MA(1) process. We use the EACF plot to try to help determine other possible orders of the
ARIMA model:

## AR/MA
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 x o o o o o o x x x o o o o
## 1 x x o o o o x o o o o o o o
## 2 x x x o o o x o o o o o o o
## 3 x x x x o o o o o o o o o o
## 4 x x x x x o o o o o o o o o
## 5 x x x x x x o o o o o o o o
## 6 x x x x x o x o o o o o o o
## 7 x x x x x x x o o o o o o o

Ignoring the set small set of x’s above the main diagonal of zeros, we see that {∇πt} seems to be
compatible with ARMA(0, 1),ARMA(0, 2), and ARMA(1, 2). We will analyze these three.
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Figure 4: Sample ACF and PACF of ∇{πt}, which appear far more stationary.

6.3 Model construction and evaluation

A good model will yield residuals {et} that look like zero mean white noise:

1. They are are uncorrelated. If there are correlations, the residuals contain information that
may be used to estimate a better model.

2. They have zero mean. If they have a non-zero mean, then the model (and forecasts) are
biased.

3. They have constant variance.

6.3.1 IMA(1,1)

This is the simplest model of the three, and the simplest ARIMA model that seemed compatible
with the data. When we fit the ARIMA(0, 1, 1) model to the time series data, we get the following
result.

## ma1
## -0.5705635

To assess whether the model results in uncorrelated residuals, we inspect figure 5.

The histogram looks symmetric about 0 but the Q-Q suggests a lack of normality in the residuals.
More telling, plots of the sample ACF and PACF of the residuals are evidence of high correlation.
We reject this model.
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Figure 5: Plots to conduct stationary assessments of ARMA(1, 1).

6.3.2 IMA(1,2)

When we fit ARIMA(0, 1, 2) to the time series data, we get the following results.

## ma1 ma2
## -0.55254743 -0.04124893

To assess whether the model results in uncorrelated residuals, we inspect the plots in figure 6.

The histogram looks symmetric about 0 but, again, the Q-Q suggests a lack of normality in the
residuals. Note that this is not strictly required. More telling, plots of the sample ACF and PACF of
the residuals are evidence of high correlation. We reject this model.

6.3.3 ARIMA(1,1,2)

When we fit the ARIMA(1, 1, 2) model to the time series data, we get the following results.

## ar1 ma1 ma2
## 0.8839643 -1.4423574 0.4689439

To assess whether the model results in uncorrelated residuals, we inspect figure 7.

The histogram looks symmetric about 0 but, again, the Q-Q suggests a lack of normality in the
residuals. However, the sample ACF and PACF seem reasonable. We perform the Ljung-Box
hypothesis (lag = 10) test on the residuals of the model for a more objective measure of white noise.

## Box-Ljung test
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Figure 6: Plots to conduct stationary assessments for ARMA(0, 1, 2).
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Figure 7: Plots to conduct stationary assessments of ARMA(1, 1, 2).
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## data: model.3$residuals
## X-squared = 10.333, df = 7, p-value = 0.1705

The null hypothesis is that the residuals for the model are white noise. The test reports a p-value of
0.171, which we consider to be strong evidence in support of the white noise hypothesis.

We choose this model. Since only one model seemed like a reasonable fit, measures like AIC were
not needed.

What follows ia a summary of the chosen model.

## ARIMA(1,1,2)
##
## Coefficients:
## ar1 ma1 ma2
## 0.8840 -1.4424 0.4689
## s.e. 0.0276 0.0338 0.0266
##
## sigma^2 estimated as 1.088e-05: log likelihood=17177.64
## AIC=-34347.27 AICc=-34347.26 BIC=-34322.1

We present it in the more familiar form given by

(1− 0.884 B)∇Yt = (1 + 1.442 B−0.469 B2)et

or, equivalently,
(1− 0.884 B)∇Yt = (1− 0.273 B)(1 + 1.715 B)et

where {et} is given by zero mean white noise,

et ∼WN(µ = 0, σ = 0.0033).

6.4 Forecasting

One of the primary goals of this time series analysis is forecasting, or predicting, the future accuracy
of the adversary, i.e., π̂T+h|T. At T = 5000, we perform a forecast up to h = 1000 steps ahead,
π̂T+h|T. See figure 8.

The held out test data remains within the 80% prediction interval for most of the time. All things
considered, this seems like a reasonable forecast. However, due to what we believe may be a model
misspecification, we think the prediction intervals are too wide and we have reason to believe
that, in the long run, {πt} will decrease in variance and hover around some asymptotic limit. We
explore this more in the next section.

6.5 Incorporating a priori information

We have a priori knowledge that we wish to incorporate into the model. Assuming the plaintext
distribution {xt} is static and the algorithm that converts plaintext to ciphers is fixed, we observe
the following:

1. The accuracy of the adversary, πt, is a measure between 0 and 1.
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Figure 8: Forecasting the future with the training set and test sets superimposed.

2. Under ideal conditions, acquiring more knowledge by observing a larger sample is not
expected to harm the adversary’s accuracy πt, in which case the expectation πt would be a
monotonically increasing function that has an asymptotic limit c ≤ 1.

Of course, at different points in time the adversary’s accuracy may change due to, say, the presence
of significant unaccounted covariates.

An ideal model for these axioms may be something like the Gompertz model or even a scaled,
relocated, and shifted cumulative distribution function (cdf). However, for the sake of model
simplicity, we assume a logarithmic form, which allows us to use linear regression. It does not
have an asymptotic limit, but we hypothesize that it is a reasonable approximation for most finite
time-horizons of interest.

Thus, we suppose the time series {πt} has the functional form

πt = β0 + β1 log t.

Instead of i.i.d. “errors” (deviations from the mean), we have reason to believe the errors are
correlated. We choose to model these errors in the ARIMA family, such that {Πt} is a random
process of the form

Πt = β0 + β1 log t + ηt

where
ηt ∼ ARIMA(p, d, q).

14



Actually, this is not quite true, since according to [3], “The presence of lagged values [. . . ] means
that β1 can only be interpreted conditional on the value of previous values of the response variable,
which is hardly intuitive.”

No matter, we press on and fit the model to the data, which yields the sought after ARIMA
regression errors for {ηt} and estimates for the parameters.

## Regression with ARIMA(1,1,2) errors
##
## Coefficients:
## ar1 ma1 ma2 xreg
## 0.8521 -1.4012 0.4355 0.0292
## s.e. 0.0234 0.0277 0.0211 0.0202
##
## sigma^2 estimated as 6.828e-06: log likelihood=45279.87
## AIC=-90549.73 AICc=-90549.73 BIC=-90513.68

We have used the same model as before, except with the dynamic regression on the logarithm of
time t. It turns out that, for the dynamic regression, ARIMA(2, 1, 2) does better and enjoys tighter
prediction intervals as well, but it was not significantly better.

To assess whether the model results in uncorrelated residuals, we insepect figure 9.
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Figure 9: Plots to conduct stationary assessments

The histogram looks symmetric about 0 but, again, the Q-Q suggests a lack of normality in the
residuals. However, the sample ACF and PACF seem reasonable. We perform the Ljung-Box
hypothesis (lag = 10) test on the residuals of the model for a more objective measure of white noise.
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## Box-Ljung test
## data: reg_model$residuals
## X-squared = 10.279, df = 6, p-value = 0.1134

At the 5% significance level, this model barely passes. We see that

Π̂t = 0.029 log t + ηt

where
ηt ∼ ARIMA(5, 1, 1)

with the above specified estimated coefficients and

et ∼WN(µ = 0, σ = 0.0026).

We show a time series plot of the model with both the training set (in black) and the test set (in
green) superimposed onto it in figure 10.
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Figure 10: Forecast distribution of more appropriate theoretical model of the time series.

We have forecasted much further into the future. The forecast seems reasonable, as it follows the
subtle positive non-linear trend.

When we compare it to the previous ARIMA model, we see that the subtle positive trend is not
captured by the model. We can address this potential shortcoming by forcing the ARIMA model to
include the drift term. When we do this, we get the following results.

## ar1 ma1 ma2 drift
## 8.472755e-01 -1.396547e+00 4.324823e-01 4.695287e-06
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We see that the drift term is a positive value near 0, but over a sufficiently long period of time it
adds up, as demonstrated by the figure 11.
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Figure 11: Forecast dsitribution of the ARIMA model with drifting.

The ARIMA model with drift adds a linear element to the autoregression, which theoretically is
not appropriate.

7 Future work: dynamic regression on co-variates

In our time series analysis, the forecasting model only used lagged values of the confidentiality
measure to forecast future values and we made no attempt to discover any other co-variates.
Therefore, it extrapolated trends but ignored any other information such as side-channel information
that may help or hinder the adversary’s efforts to decode the ciphers.

At a time t′, the adversary may learn something about the system other than observing the time
series of ciphers, {Ct}. This information may be incorporated into the time series model through
an autoregression that has predictor variables other than just lagged components of the measure on
the adversary’s accuracy, {πt}. The estimated paramters of the dynamic autoregressive model may
also be used to explain the effect such predictor variables have on confidentiality.

A potentially interesting model is given by the data

(t, πt, It)

where t denotes time index, πt denotes the adversary’s accuracy at time t, and It denotes the
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information measure of the t-th observation, defined as

It = log2
1

Pr(g(ct′))
.

Observe that lagged components of It may be used to make the regression a function of entropy Ht
as well.

When the entropy is reduced or an informative observation comes in, this may have a larger impact
on the time series {πt} and ideally we would incorporate this effect into the model.

The information gain does not necessarily need to be related to any of the time series previously
mentioned, either. For instance, suppose the adversary, through side-channel information, acquires
the knowledge that a certain cipher c′ maps to some smaller subset W ⊂ X. This also may be
modeled as an information gain or entropy reduction, since the distribution of ciphers {ct} has less
entropy given this information.

8 Conclusion

The statician George Box once wrote, “All models are wrong, some are useful.” If we include
drifting in the ARIMA model, it eventually predicts impossible futures. More to the point, it is not a
good match for the theoretical model, as its bias is a function of time t.

The logarithmic model performs better in this regard, as it takes an inordinately long time
(1,531,520,000,000,000 steps) to reach impossible values, although the prediction interval obtains it
much more quickly. In addition, it more closely matches the features of the theoretical underlying
distribution.

That said, there is still a lot to be said of the ARIMA()1, 1, 2) model, given its simplicity. The
adversary takes a very long time before it starts to seem like the simple model may be negatively
biased.

Recall that if we specify that π∗ = 0.44 is the minimum confidentiality we wish to maintain, a
reasonable policy may be to use the latest observation to forecast the future to estimate where
πt = π∗, which is given by

T̂∗ = arg minT πT | 11000 > π∗.

Inspecting figure 12, we see that T̂∗ ≈ 20000. That is, to maintain π∗ > 0.44, a password reset
should occur before T∗ ≈ 20000.

Interestingly, the prediction intervals are far less forgiving and if we used those as a pessimistic
estimator of T∗, we would nearly instantaneouls need to do a password reset.

To be a useful measure, it would seem that the uncertainty should be lower. Possibly, as we discuss
in section 7, we could incorporate other covariates that help reduce the uncertainty. Or, perhaps we
need to impose a more realistic dynamic trend. After all, the logarithm is not a particularly good fit
for the data either, it is simply potentially better than the other alternatives.
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Figure 12: π∗ vs T∗.

References

[1] Bias–variance tradeoff, April 2021. Page Version ID: 1018809373. URL: https://en.wikipedia.o
rg/w/index.php?title=Bias_variance_tradeoff&oldid=1018809373.

[2] Dickey–Fuller test, April 2021. Page Version ID: 1019701572. URL: https://en.wikipedia.org/w
/index.php?title=Dickey_Fuller_test&oldid=1019701572.

[3] Hundman Rob. The ARIMAX model muddle, October 2010. URL: https://robjhyndman.com/
hyndsight/arimax/.

19

https://en.wikipedia.org/w/index.php?title=Bias_variance_tradeoff&oldid=1018809373
https://en.wikipedia.org/w/index.php?title=Bias_variance_tradeoff&oldid=1018809373
https://en.wikipedia.org/w/index.php?title=Dickey_Fuller_test&oldid=1019701572
https://en.wikipedia.org/w/index.php?title=Dickey_Fuller_test&oldid=1019701572
https://robjhyndman.com/hyndsight/arimax/
https://robjhyndman.com/hyndsight/arimax/

	Introduction
	Encrypted search model
	Threat model: known-plaintext attack
	Confidentiality measure
	Forecasting model

	Data description
	Time series analysis of \{\pi_t\}
	Visualization and stationary transformations
	ARIMA model selection
	Model construction and evaluation
	IMA(1,1)
	IMA(1,2)
	ARIMA(1,1,2)

	Forecasting
	Incorporating information

	Future work: dynamic regression on co-variates
	Conclusion
	References

