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Abstract

This paper investigates maximum likelihood techniques to estimate component reliability from masked
failure data in series systems. A likelihood model accounts for right-censoring and candidate sets indica-
tive of masked failure causes. Extensive simulation studies assess the accuracy and precision of maximum
likelihood estimates under varying sample size, masking probability, and right-censoring time for compo-
nents with Weibull lifetimes. The studies specifically examine the accuracy and precision of estimates,
along with the coverage probability and width of BCa confidence intervals. Despite significant masking
and censoring, the maximum likelihood estimator demonstrates good overall performance. The bootstrap
yields correctly specified confidence intervals even for small sample sizes. Together, the modeling frame-
work and simulation studies provide rigorous validation of statistical learning from masked reliability
data.
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1 Introduction

Quantifying the reliability of individual components in a series system [? ] is challenging when only system-
level failure data is observable, especially when this data is masked by right-censoring and ambiguity about
the cause of failure. This paper develops and validates maximum likelihood techniques to estimate component
reliability from right-censored lifetimes and candidate sets indicative of masked failure causes. Specific
contributions include:

e Deriving a likelihood model that incorporates right-censoring and candidate sets to enable masked data
to be used for parameter estimation.

¢ Conducting simulation studies for a well-designed series system with component lifetimes following a
Weibull distribution. We assess the accuracy and precision of maximum likelihood estimates (MLE)
under varying conditions related to sample size, masking probability, and right-censoring. We found
that the MLE performs well in the presence of significant masking and censoring even for relatively
small samples.

o Evaluating the coverage probability (accuracy) and precision of the BCa confidence intervals (CI)
constructed for the MLE. We found that the Cls have good empirical coverage probability even for
small sample sizes in the presence of significant masking and censoring, but that the CIs for the shape
parameters were less accurate, indicating that the shape parameters are more difficult to estimate than
the scale parameters.

The simulation studies focus on three key aspects:

1. The impact of right-censoring on component parameter estimates.
2. How masking probability for the cause of failure affects the estimates.
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3. The role of sample size in mitigating challenges related to censoring and masking.

Together, the likelihood framework and simulation methodology enable rigorous validation of inferring
component reliability from masked system data. This expands the capability to learn properties of the latent
components and perform robust statistical inference given significant data challenges.

2 Series System Model

Consider a system composed of m components arranged in a series configuration. Each component and
system has two possible states, functioning or failed. We have n systems whose lifetimes are independent
and identically distributed (i.i.d.). The lifetime of the i*" system is denoted by the random variable T; and
the lifetime of its j*" component is denoted by the random variable T;;. We assume the component lifetimes
in a single system are statistically independent and non-identically distributed. Here, lifetime (or lifespan)
is defined as the elapsed time from when the new, functioning component (or system) is put into operation
until it fails for the first time. A series system fails when any component fails, thus the lifetime of the i*®
system is given by the component with the shortest lifetime,

Ti = min{Til,Tig, . ,sz}

There are three particularly important distribution functions in reliability analysis: the reliability func-
tion, the probability density function (pdf), and the hazard function. The reliability function, Ry, (¢), is the
probability that the " system has a lifetime greater than the given duration t,

Ry, (t) = Pr{T; > t}. (1)
The pdf of T; is denoted by fr,(t) and may be defined as

d

fTi(t) = _%

Rr(t).

Next, we introduce the hazard function. The probability that a failure occurs between the times ¢t and ¢t + At
given that no failure occurs before time ¢t may be written as

Pr{t < T; <t+ At}
Pr{T; > t}

The failure rate is given by dividing this equation by the length of the time interval, At:

Pr{t < T; <t+ At} 1 _ Rp(t+At) —Rp(t) 1
At Pr{T; >t} At Ry, (t)

The hazard function hr, (t) for T; is the instantaneous failure rate at time ¢, which is given by

. Rp(t+At)—Rp(t) 1
At—0 At RT- (t)

1 2
o 1 fr()
- <dtRT,;(t)> Ry (t) Rj;ri (t)

The lifetime of the j*® component is assumed to follow a parametric distribution indexed by a parameter
vector 8;. The parameter vector of the overall system is defined as

0 = (017"'79771)7

where 8; is the parameter vector of the 4t component.

When a random variable X is parameterized by a particular @, we denote the reliability function by
Rx (t;0), and the same for the other distribution functions. As a special case, for the components in a series
system, we subscript by their labels, e.g, the pdf of the ;" component is denoted by fj(t;0;). Two continuous



random variables X and Y have a joint pdf fx y (z,y). Given the joint pdf fx y(z,y), the marginal pdf of
X is given by

fX(JJ):/ny,Y(%y)d%

where Y is the support of Y. (If Y is discrete, replace the integration with a summation over ).)
The conditional pdf of Y given X =z, fy|x(y|x), is defined as

iy (ylz) = W

We may generalize all of the above to more than two random variables, e.g., the joint pdf of Xy,..., X, is
denoted by f(z1,...,Zm).

Next, we dive deeper into these concepts and provide mathematical derivations for the reliability function,
the pdf, and the hazard function of the series system. We begin with the reliability function of the series
system, as given by the following theorem.

Theorem 2.1. The series system has a reliability function given by
Ry, (t:0) = [ ] B;(1:6;). (3)
j=1

where R;(t;0;) is the reliability function of the j™ component.
Proof. The reliability function is defined as
Ry, (t;0) = Pr{T; > t}

which may be rewritten as
Ry, (t;0) = Pr{min{T}1, ..., Tin,} > t}.

For the minimum to be larger than ¢, every component must be larger than ¢,
Ry, (t;0) =Pr{Tin > t,...,Tim > t}.
Since the component lifetimes are independent, by the product rule the above may be rewritten as
Ry, (t;0) = Pr{T;; >t} x --- X Pr{T},, > t}.

By definition, R;(t;0) = Pr{T;; > t}. Performing this substitution obtains the result
Rr,(t;0) = [ [ R;(:6;)-
j=1

O

Theorem 7?7 shows that the system’s overall reliability is the product of the reliabilities of its individual
components. This is an important relationship in all series systems and will be used in the subsequent
derivations. Next, we turn our attention to the pdf of the system lifetime, described in the following
theorem.

Theorem 2.2. The series system has a pdf given by
Fr.(6:0) = f;(t:6;) T ] Ru(t:65), (4)
j=1 k=1

=

where f;(t;0;) is the pdf of the j component and Ry (t; 6y) is the reliability function of the k™ component.



Proof. By definition, the pdf may be written as
d m
fr.(6:0) = —— [ B;(%:6;).
j=1

By the product rule, this may be rewritten as

m d m
fr,(t;0) = **Rl t;61) H — Ryi(t;01) d— U
ffltOm thelim
: d :
Jj=2 Jj=2
Recursively applying the product rule m — 1 times results in
m—1 m m—1
fr,(t:0) = ijta HRktOk HRtO R (£ 0m),
k#]
which simplifies to
m m
fr.(t;0) = f;(t:05) [ | Ri(t; 0x)
Jj=1 k=1
k#j

O

Theorem ??7 shows the pdf of the system lifetime is a function of the pdfs and reliabilities of its compo-
nents. We continue with the hazard function of the system lifetime, defined in the next theorem.

Theorem 2.3. The series system has a hazard function given by
hTi (t;0) = Zhj(t;ej), (5)
j=1

where h;(t;05) is the hazard function of the jt™ component.

Proof. By Equation (?7), the i'" series system lifetime has a hazard function defined as

hr, (;0) = R (6:0)°

Plugging in expressions for these functions results in
>y fi(t:05) H%l, Ry (t; 0k)
J

hr (t;0) =
Tz(? ) H;n:]_RJ(t,OJ) )

which can be simplified to

O

Theorem ?7? reveals that the system’s hazard function is the sum of the hazard functions of its components.
By definition, the hazard function is the ratio of the pdf to the reliability function,

fTi (t; 0)



and we can rearrange this to get
fTi (t; 0) = th‘, (t; O)RT@ (t; 0)
m m 6
Z{Zhj(t;ej)}{HRj(t;Oj)}, ©)
j=1 j=1

which we sometimes find to be a more convenient form than Equation (?7?).

In this section, we derived the mathematical forms for the system’s reliability, probability density, and
hazard functions. Next, we build upon these concepts to derive distributions related to the component cause
of failure.

2.1 Component Cause of Failure

Whenever a series system fails, precisely one of the components is the cause. We denote the component cause
of failure of the i*" series system by the discrete random variable K;, whose support is given by {1,...,m}.
For example, K; = j indicates that the component indexed by j failed first, i.e.,

Tij < Tij’

for every j' in the support of K; except for j. Since we have series systems, K; is unique.
The system lifetime and the component cause of failure has a joint distribution given by the following
theorem.

Theorem 2.4. The joint pdf of the component cause of failure K; and the series system lifetime T; is given

by
frimi (4, 150) = hy(t; 05) HRz(t; 0.), (7)
=1
where hy(t;0;) and R;(t;6;) are respectively the hazard and reliability functions of the I™ component.

Proof. Consider a series system with 3 components. By the assumption that component lifetimes are mutu-
ally independent, the joint pdf of T;1, T;2, and T3 is given by

3
f(tr,to,t3:0) =[] £(t;:0
j=1

where f;(t;;0;) is the pdf of the j®® component. The first component is the cause of failure at time ¢ if
K; =1 and T; = t, which may be rephrased as the likelihood that T;; = t, T;2 > t, and T;3 > t. Thus,

fKi,Ti(jat;e):/ / f1(t; 01) f2(ta; 02) f3(t3; O3)dtadty
t t

-/ " 111501 falta; 02) Ra(t: 0)dis
= fi1(t;01)Ra(t;02)R3(t1;03).

By definition, f1(t;01) = h1(t;01)R1(¢;01), and when we make this substitution into the above expression
for fr, 1, (j,t;0), we obtain the result

m

fK“T(j,te —]’L1t91 H tOl

Generalizing this result completes the proof. O

Theorem 7?7 shows that the joint pdf of the component cause of failure and system lifetime is a function
of the hazard functions and reliability functions of the components. This result will be used in Section 7?7
to derive the likelihood function for the masked data.

The probability that the j*" component is the cause of failure is given by the following theorem.



Theorem 2.5. The probability that the j™ component is the cause of failure is given by

hy(T;; 05) }

S (T 6n) 8)

Pr{K; = j} = Ee[

where K; is the random wvariable denoting the component cause of failure of the it system and T is the
random variable denoting the lifetime of the it system.

Proof. The probability the j* component is the cause of failure is given by marginalizing the joint pdf of
K; and T; over T},

Pr{Ki = .]} = / sz:,Ti (jat§0)dt'
0

By Theorem 77, this is equivalent to

Pr{K; = j} / hy(t; 05) Rr, (t; 0)dt
0

O

If we know the system failure time, then we can simplify the above expression for the probability that
the j*" component is the cause of failure. This is given by the following theorem.

Theorem 2.6. The probability that the j* component is the cause of system failure given that we know the
system failure occurred at time t; is given by
h;(ti; ;)

Pr{K; = j|T; = t;} = < 073
r{ j| } Zl:l hl(ti; 01)

Proof. By the definition of conditional probability,

fri1.(,t:;0)
Jr,(ti;0)
h;(ti; 0;5) R, (ti; 0)
Ir,(t:;0)

Since fr,(t;;0) = hr,(t:;0)Rr,(t;;0), we make this substitution and simplify to obtain

Pr{K; =j|T; =t;} =

| hi (55 05)
Pr{K; = j|ITi = t;} = =
U6 =31 =6 2= hulti; 61)

O

Theorems 7?7 and 77 are closely related and have similar forms. Theorem ?7 can be seen as a special
case of Theorem ?77.

2.2 System and Component Reliabilities

The reliability of a system is described by its reliability function, which denotes the probability that the
system is functioning at a given time, e.g., R, (t'; @) denotes the probability that the i system is functioning
at time ¢'. If we want a summary measure of the system’s reliability, a common measure is the mean time
to failure (MTTF), which is the expectation of the system lifetime,

MTTF = Eo[T;]. (9)



which if certain assumptions are satisﬁecﬂ is equivalent to the integration of the reliability function over
its support. While the MTTF provides a summary measure of reliability, it is not a complete description.
Depending on the failure characteristics, the MTTF can be misleading. For example, a system that has a
high likelihood of failing early in its life may still have a large MTTF if it is fat—tailedﬂ

The reliability of the components in the series system determines the reliability of the system. We denote
the MTTF of the j* component by MTTF; and, according to Theorem ?7, the probability that the gt
component is the cause of failure is given by Pr{K; = j}. In a well-designed series system, there are no
components that are much “weaker” than any of the others, e.g., they have similar MTTFs and probabilities
of being the component cause of failure. In this paper, we perform a sensitivity analysis of the MLE for a
well-designed series system.

3 Likelihood Model for Masked Data

We aim to estimate an unknown parameter, 0, using masked data. We consider two types of masking:
censoring of system failures and masking component causes of failure.

Censoring We generally encounter two types of censoring: the system failure is observed to occur
within some time interval, or the system failure is not observed but we know that it was functioning at least
until some point in time. The latter is known as right-censoring, which is the type of censoring we consider
in this paper.

Component Cause of Failure Masking In the case of masking the component cause of failure, we
may not know the precise component cause of failure, but we may have some indication. A common example
is when a diagnostician is able to isolate the cause of failure to a subset of the components. We call this
subset the candidate set.

Masked Data In this paper, each system 7 is put into operation and observed until either it fails or its
failure is right-censored after some duration 7;, so we do not directly observe the system lifetime but rather
we observe the right-censored lifetime, S;, which is given by

S; = min{r;, T;}. (10)
We also observe an event indicator, d;, which is given by
5i = g, <m, (11)

where 1condition 18 an indicator function that denotes 1 if the condition is true and 0 otherwise. Here, §; = 1
indicates the i system’s failure was observed and §; = 0 indicates it was right—censored If a system failure
event is observed (§; = 1), then we also observe a candidate set that contains the component cause of failure.
We denote the candidate set for the i'" system by C;, which is a subset of {1,...,m}.

In summary, the observed data is assumed to be i.i.d. and is given by D = {Dy,..., D}, where each D;
contains the following elements:

« S, is the right-censored system lifetime of the i*? system.
e 0; is the event indicator for the i*" system.
« C; is the set of candidate component causes of failure for the i*" system.

The masked data generation process is illustrated in Figure ?7.

IT; is non-negative and continuous, R, (t;0) is a well-defined, continuous, and differential function for ¢ > 0, and
fooo R, (t;0)dt converges.

2A “fat-tailed” distribution refers to a probability distribution with tails that decay more slowly than those of the exponential
family, such as the case with the Weibull when its shape parameter is less than 1. This means that extreme values are more
likely to occur, and the distribution is more prone to “black swan” events or rare occurrences. In the context of reliability, a
fat-tailed distribution might imply a higher likelihood of unusually long lifetimes, which can skew measures like the MTTF. [?

]

3In some likelihood models, there may be more than two possible values for §;, but in this paper, we only consider the case
where §; is binary. Future work could consider the case where ¢; is categorical by including more types of censoring events and
more types of component cause of failure masking.
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Figure 1: This figure showcases a dependency graph of the generative model for D; = (S;,0;,C;). The
elements in green are observed in the sample, while the elements in red are unobserved (latent). We see that
C; is related to both the unobserved component lifetimes Tj1,...,T;, and other unknown and unobserved
covariates, like ambient temperature or the particular diagnostician who generated the candidate set. These
two complications for C; are why we seek a way to construct a reduced likelihood function in later sections
that does not need to model the distribution of C;.

An example of masked data D with a right-censoring time 7 = 5 can be seen in Table ?7 for a series
system with 3 components.

System Right-censored lifetime (S;) Event indicator (¢;) Candidate set (C;)
1 1.1 1 (1,2}

2 1.3 1 {2}

4 2.6 1 {2,3}

5 3.7 1 {1,2,3}

6 5 0 0

3 5 0 0

Table 1: Example of masked data D with a right-censoring time 7 = 5 for a series system with 3 components.

In our model, we assume the data is governed by a pdf, which is determined by a specific parameter,
represented as @ within the parameter space €2. The joint pdf of the data D can be represented as follows:

n n
f(D;0) =[] £(Ds;6) = [[ £ (si,0i¢::0),
i=1 i=1
where s; is the observed system lifetime, §; is the observed event indicator, and ¢; is the observed candidate
set of the i*" system.
This joint pdf tells us how likely we are to observe the particular data, D, given the parameter 8. When

we keep the data constant and allow the parameter 8 to vary, we obtain what is called the likelihood function
L, defined as

where
Li(0) = f(D:; 0)
is the likelihood contribution of the " system.
For each type of data, right-censored data and masked component cause of failure data, we will derive
the likelihood contribution L;, which refers to the part of the likelihood function that this particular piece of
data contributes to. We present the following theorem for the likelihood contribution model.



Theorem 3.1. The likelihood contribution of the it system is given by

m 85
L,(0) HRj<si;9j>(Z hj<si;9j>) (12)

Jj=1 Jjeci

where §; = 0 indicates the i system is right-censored at time s; and §; = 1 indicates the i'" system is
observed to have failed at time s; with a component cause of failure potentially masked by the candidate set
C;.

In the following subsections, we prove this result for each type of masked data, right-censored system
lifetime data (6; = 0) and masking of the component cause of failure (6; = 1).

3.1 Masked Component Cause of Failure

When a system failure occurs, two types of data are observed in our data model: the system’s lifetime and
a candidate set that is indicative of the component cause of failure without necessarily precisely identifying
the failed component. This kind of masking of the true cause of failure is especially prevalent in industrial
settings. We will revisit this idea with a real-world example to demonstrate its significance after introducing
some specific theoretical conditions.

The key goal of our analysis is to estimate the parameter 8, which maximizes the likelihood of the
observed data, and to estimate the precision and accuracy of this estimate using the Bootstrap method. To
achieve this, we first need to assess the joint distribution of the system’s continuous lifetime, T;, and the
discrete candidate set, C;, which can be written as

Ir,c.(ti,ci;0) = fr,(ti;0) Pro{C; = ¢;|T; = t;},

where fr,(t;;0) is the pdf of T; and Prg{C; = ¢;|T; = t;} is the conditional pmf of C; given T; = ¢,.

We assume the pdf fr,(t;;0) is known, but we do not have knowledge of Prg{C; = ¢;|T; = t;}, i.e., the
data generating process for candidate sets is unknown. However, it is critical that the masked data, C;,
is correlated with the " system. This way, the conditional distribution of C; given T; = ¢; may provide
information about 6, despite our statistical interest being primarily in the series system rather than the
candidate sets.

To make this problem tractable, we assume a set of conditions that make it unnecessary to estimate
the generative processes for candidate sets. The most important way in which C; is correlated with the i*®
system is given by assuming the following condition.

Condition 3.1. The candidate set C; contains the index of the failed component, i.e.,
PI‘g{Ki S Cl} =1,
where K; is the random variable for the failed component index of the it system.

Assuming Condition 7?7, C; must contain the index of the failed component, but we can say little else
about what other component indices may appear in C;. In order to derive the joint distribution of C; and T;
assuming Condition 77, we take the following approach. We notice that C; and K; are statistically dependent.
We denote the conditional pmf of C; given T; = t; and K; = j as

Pro{C; = ¢;|T; = t;, KK; = j}.

Even though K is not observable in our masked data model, we can still consider the joint distribution
of T;, K;, and C;. By Theorem ??, the joint pdf of T; and Kj; is given by

b

Ir i (ti,5;0) = hy(ti;05) | | Ri(ti; 61),

1



where h;(t;;0;) and R;(s;;0;) are respectively the hazard and reliability functions of the 4t component.
Thus, the joint pdf of Tl, K;, and C; may be written as

Jr, k¢ (ti, Jy iy 0) = fr, i, (ti, k; 0) Pro{C; = ci|T; = t4, K; = j}

" . 13
= h;(ti; ;) HRl(ti;Ol)Pra{Ci =a|l; =t;, K; = j}. =

=1

We are going to need the joint pdf of T; and C;, which may be obtained by summing over the support
{1,...,m} of K; in Equation (?7),

m

fr.ci(tiycis 0 HRz ti;6) Z{hj(ti§0j)Pr9{Ci =cl|Ti = t;, K; ZJ}}-

By Condition ??, Prg{C; = ¢;|T; = t;, K; = j} = 0 when K, = j and j ¢ ¢;, and so we may rewrite the joint
pdf of T; and C; as

frc.(ti,ci; 0 HRZ ti; 61) Z{hj(ti;aj)Pre{Ci =q|T; =t;, K; :j}}' (14)

Jec;

When we try to find an MLE of 6 (see Section ?7?), we solve the simultaneous equations of the MLE
and choose a solution 8 that is a maximum for the likelihood function. When we do this, we find that 6
depends on the unknown conditional pmf Prg{C; = ¢;|T; = t;, K; = j}. So, we are motivated to seek out
more conditions (that approximately hold in realistic situations) whose MLEs are independent of the pmf
Pro{Ci = ci|T; = t;, K; = j}.

Condition 3.2. Given an observed system failure time T; = t; and candidate set c;, the probability of the
candidate set is the same when we condition on any component cause of failure in the candidate set. That
18,

Pro{Ci = ci|T; = t;, K; = j'} = Pro{C; = &;|Ts = t;,, K; = j}
for all j,5' € ¢;.

Assuming Conditions ?? and ??, Prg{C; = ¢;|T; = t;, K; = j} may be factored out of the summation in
Equation (??), and thus the joint pdf of T; and C; may be rewritten as

m

froc.(tiyci;0) = Pro{C; = ci|Ty = t;, K; = §'} [ [ Ruti; 60) > hy(ti: 05)

=1 J€EC;

where j' € ¢;.

If Pro{C; = ¢|T; = t;, K; = j'} is a function of 6, the MLEs are still dependent on the unknown
Pro{C; = ¢|T; = t;, K; = j'}. This is a more tractable problem, but we are primarily interested in the
situation where we do not need to know or estimate Prg{C; = ¢;|T; = t;, K; = j'} to find an MLE of 6. The
last condition we assume achieves this result.

Condition 3.3. The masking probabilities conditioned on failure time T; and component cause of failure K;
are not functions of 0. In this case, the conditional probability of C; given T; = t; and K; = j' is denoted by

Bi =Pr{C; = ;| T; = t;, K; = §'},

where B; is not a function of 6.

Real-World Relevance

According to [? |, many industrial problems feature masking due to time constraints and the high costs
associated with failure analysis. Crucially, these industrial scenarios often fulfill Conditions 7?7, 7?7, and 77,
reinforcing the applicability of the results presented in this paper.

10



To elucidate, let’s consider a diagnostic tool used for identifying failed components in an electronic device
comprising three critical components arranged in a series configuration. Two are on a common circuit board
(labeled 1 and 2), while the third (labeled 3) is separate. Our diagnostic tool isolates the failure to either
the circuit board or the individual component but does not differentiate between components 1 and 2 if the
failure is on the shared board. In this case, we have the following conditional probabilities for candidate sets:

1 ife¢;={1,2}and j=1orj=2,
PI‘{CZ = CZ‘/T,L = ti,Ki :j} 1 if C; = {3} andj = 3,

0 otherwise.
Our diagnostic tool satisfies the conditions as follows:

e Condition ??: The candidate set ¢; always contains the failed component j. Our diagnostic tool is
able to isolate the failure to either the circuit board or the individual component, and so the candidate
set always contains the failed component.

e Condition ?7: As we vary the cause of failure j, we see that the conditional probability of the given
candidate set ¢; is the same for all j € ¢;. Our diagnostic tool cannot distinguish between components
1 and 2 if the shared circuit board is the cause of failure, and therefore the probability of the candidate
set is the same when we condition on either component 1 or 2 being the cause of failure.

e Condition ??7: The probabilities associated with our diagnostic tool are fixed and do not depend on
the system parameter 6.

By emphasizing that these conditions hold both in a general industrial context and a specific real-world
example, the paper enhances its applicability and relevance to both theoreticians and practitioners.

Likelihood Contribution

When Conditions 7?7, 7?7, and 77 are satisfied, the joint pdf of T; and C; is given by

fryc.(tisci;0) = 55 HRl(ti§ 0:) Z hj(ti; 05).

=1 JEC;

When we fix the sample and allow 8 to vary, we obtain the contribution to the likelihood L from the i*®
observation when the system lifetime is exactly known (4; = 1) but the component cause of failure is masked
by a candidate set ¢;:

L:(0) o< [[ Ritis00) S hy(t::65), (15)
=1

JEci

where we dropped the factor 3; since it is not a function of 0E|

To summarize this result, assuming Conditions 77, 7?7, and 77, if we observe an exact system failure time
for the i system (§; = 1), but the component that failed is masked by a candidate set c;, then its likelihood
contribution is given by Equation (?7?).

3.2 Right-Censored Data

As described in Section ?7?, we observe realizations of (S;, §;,C;) where S; = min{T;, 7;} is the right-censored
system lifetime, §; = 17, -, is the event indicator, and C; is the candidate set.

In the previous section, we discussed the likelihood contribution from an observation of a masked compo-
nent cause of failure, i.e., 6; = 1. We now derive the likelihood contribution of a right-censored observation,
0; = 0, in our masked data model.

4When doing maximum likelihood estimation, we are interested in the parameter values that maximize the likelihood
function. Since j; is not a function of 6, it does not affect the location of the maximum of the likelihood function, and so we
can drop it from the likelihood function.

11



Theorem 3.2. The likelihood contribution of a right-censored observation (§; = 0) is given by

m

Li(0) = [ [ Rulsi; 60). (16)

=1
Proof. When right-censoring occurs, then S; = 7, = s;, and we only know that T; > s;, and so we integrate
over all possible values that it may have obtained,

L,(@) = Prg{Ti > 87;}.

By definition, this is just the survival or reliability function of the series system evaluated at s;,

m

=1
O

When we combine the two likelihood contributions, we obtain the likelihood contribution for the ‘P

system shown in Theorem 77,

[1%, Ri(si;61) if6; =0
H7;1 Rl(sﬁel)zjeci hj(Si;Oj) if §; = 1.

We use this result in Section ?? to derive the maximum likelihood estimator (MLE) of 6.

3.3 Identifiability and Convergence Issues

In our likelihood model, masking and right-censoring can lead to issues related to identifiability and flat
likelihood regions. Identifiability refers to the unique mapping of the model parameters to the likelihood
function, and lack of identifiability can lead to multiple sets of parameters that explain the data equally well,
making inference about the true parameters challenging [? ], while flat likelihood regions can complicate
convergence [? |.

In our simulation study, we address these challenges in a pragmatic way. Specifically, failure to converge
to a solution within a maximum of 125 iterations is interpreted as evidence of the aforementioned issues,
leading to the discarding of the sampleﬂ However, in Section ?7, where we discuss the bias-corrected and
accelerated (BCa) bootstrap method for constructing confidence intervals, we do not discard any resamples.
This strategy helps ensure the robustness of the results, while acknowledging the inherent complexities of
likelihood-based estimation in models characterized by masking and right-censoring. In our simulation study,
we report the convergence rates, and find that for most scenarios, the convergence rate is greater than 95%
(100% once the sample is sufficiently large).

4 Maximum Likelihood Estimation

In our analysis, we use maximum likelihood estimation (MLE) to estimate the series system parameter 6
from the masked data [? ? ]. The MLE finds parameter values that maximize the likelihood of the observed

data under the assumed model. A maximum likelihood estimate, 97 is a solution of

L(6) = pax L(6), (17)

where L(0) is the likelihood function of the observed data. For computational efficiency and analytical
simplicity, we work with the log-likelihood function, denoted as ¢(6), instead of the likelihood function [? ].

5The choice of 125 iterations was also made for practical reasons. Since we are generating millions of samples and trying to
find an MLE for each in our simulation study, if we did not limit the number of iterations, the simulation study would have
taken too long to run.

12



Theorem 4.1. The log-likelihood function, £(0), for our masked data model is the sum of the log-likelihoods
for each observation,

(0) = Z&(e), (18)

where £;(0) is the log-likelihood contribution for the i observation:

0:(8) = ZlogRj(si;Oj)—F(Si log<z hj(si;ej)) (19)

JEC;

Proof. The log-likelihood function is the logarithm of the likelihood function,

£(0) =log L(0) = log H L;(0)= Zlog L;(6).
i=1 i=1

Substituting L;(0) from Equation (??), we consider these two cases of §; separately to obtain the result in

Theorem ??. Case 1: If the i*? system is right-censored (J; = 0),

0:(0) =log [ [ Ri(si;60) = > log Ri(si; 61).

=1 =1

Case 2: If the i*" system’s component cause of failure is masked but the failure time is known (§; = 1),

0:(0) = _log Ri(ti; 61) + log B; + log(z hj(si; 0,-)).

=1 JEC;

By Condition 7?7, we may discard the log 3; term since it does not depend on 6, giving us the result

£4(0) = 3 tow (100 + g 3 1y (505)).
=1

JEC;
Combining these two cases gives us the result in Theorem ?7. O

The MLE, é, is often found by solving a system of equations derived from setting the derivative of the

log-likelihood function to zero [? |, i.e.,

0
20, £(0) =0, (20)
for each component ¢; of the parameter 8. When there’s no closed-form solution, we resort to numerical
methods like the Newton-Raphson method.

Assuming some regularity conditions, such as the likelihood function being identifiable, the MLE has
many desirable asymptotic properties that underpin statistical inference, namely that it is an asymptotically
unbiased estimator of the parameter 8 and it is normally distributed with a variance given by the inverse of
the Fisher Information Matrix (FIM) [? ]. However, for smaller samples, these asymptotic properties may
not yield accurate approximations. We propose to use the bootstrap method to offer an empirical approach
for estimating the sampling distribution of the MLE, in particular for computing confidence intervals.

5 Bias-Corrected and Accelerated Bootstrap Confidence Intervals

We utilize the non-parametric bootstrap to estimate the sampling distribution of the MLE. In the non-
parametric bootstrap, we resample from the observed data with replacement to generate a bootstrap sample.
The MLE is then computed for the bootstrap sample. This process is repeated to generate numerous
bootstrap replicates of the MLE. The sampling distribution of the MLE is then estimated by the empirical
distribution of the bootstrap replicates of the MLE.

Our main focus is on generating confidence intervals for the MLE. The method we use to generate
confidence intervals is known as Bias-Corrected and Accelerated Bootstrap Confidence Intervals (BCa) [? ],
which applies two corrections to the standard bootstrap method:

13



e Bias Correction: This adjusts for bias in the bootstrap distribution itself. This bias is measured as
the difference between the mean of the bootstrap distribution and the observed statistic. It works by
transforming the percentiles of the bootstrap distribution to correct for these issues. This may be a
useful adjustment in our case since we are dealing with small samples with two potential sources of
bias: right-censoring and masking component cause of failure.

o Acceleration: This adjusts for the rate of change of the statistic as a function of the true, unknown
parameter. This correction is important when the shape of the statistic’s distribution changes with
the true parameter. Since we have a number of different shape parameters, k1, ..., k., we may expect
the shape of the distribution of the MLE to change as a function of the true parameter, making this
correction potentially useful.

Correctly Specified Confidence Intervals Since we are primarily interested in generating confidence
intervals for small samples for a biased MLE, the BCa method is a reasonable choice for our simulation
study. In our simulation study, we evaluate the performance of the BCa confidence intervals by calculating
their coverage probability. A correctly specified 95% confidence interval contains the true parameter value
approximately 95% of the time in repeated sampling.

In this study, we consider a coverage probability above 90% to be satisfactory, as it offers a reasonable
trade-off between precision and reliability. A coverage probability below this would signify undue confidence
in the precision of the MLE. Conversely, a coverage probability near 100% may indicate excessively wide
intervals, thereby diminishing the precision of the MLE. Our objective is to construct confidence intervals
that are as narrow as possible while achieving good empirical coverage close to the nominal level of 95%.

Challenges While the bootstrap method provides a robust and flexible tool for statistical estimation,
its effectiveness can be influenced by many factors. A few of these factors are particularly relevant to our
study:

e Convergence: Instances of non-convergence in our bootstrap samples were observed, which can occur
when the estimation method, like the MLE used in our analysis, fails to converge due to the specifics
of the resampled data [? ]. This issue can potentially introduce bias or reduce the effective sample size
of our bootstrap distribution.

e Small Samples: The bootstrap’s accuracy can be compromised with small sample sizes, as the method
relies on the Law of Large Numbers to approximate the true sampling distribution. For small samples,
the bootstrap resamples might not adequately represent the true variability in the data, leading to
inaccurate results [? ].

e Masking: Our data involves right censoring and a masking of the component cause of failure when a
system failure is observed. These aspects can cause certain data points or trends to be underrepresented
or not represented at all in our data, introducing bias in the bootstrap distribution [? ].

Despite these challenges, we found the bootstrap method useful in constructing correctly specified confi-
dence intervals.

6 Series System with Weibull Components

The Weibull distribution, introduced by Waloddi Weibull in 1937, has been instrumental in reliability analysis
due to its ability to model a wide range of failure behaviors. Reflecting on its utility, Weibull modestly noted
that it “[...] may sometimes render good service.” [? | In the context of our study, we model a system as
originating from components with Weibull distributed lifetimes arranged in a series configuration, producing
a specific form of the likelihood model described in Section ??, which deals with challenges such as right
censoring and masked component cause of failure.

The j* component of the i*" system has a lifetime distribution given by

T;; ~ Weibull(k;, ;) fori=1,...,nand j=1,...,m,
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where \; > 0 is the scale parameter and k; > 0 is the shape parameter. The 4t component has a reliability
function, pdf, and hazard function given respectively by

R;(t; Aj, kj) = eXp{—(jj_)kj}, (21)

ki (6 \"!
(N k) = 2L [ = . 9
stk =3 (1) (23)
The shape parameter of the Weibull distribution is of particular importance:

o k; < 1indicates infant mortality. An example of how this might arise is a result of defective components
being weeded out early, and the remaining components surviving for a much longer time.

o k; =1 indicates random failures (independent of age). An example of how this might arise is a result
of random shocks to the system, but otherwise the system is age—independentﬂ

e k; > 1 indicates wear-out failures. An example of how this might arise is a result of components
wearing as they age.

We show that the lifetime of the series system composed of m Weibull components has a reliability,
hazard, and probability density functions given by the following theorem.

Theorem 6.1. The lifetime of a series system composed of m Weibull components has a reliability function,
hazard function, and pdf respectively given by

Rr,(t;0) = exp{§:<;)kj}, (24)

()"

= (£ ()" ool £}

j=1

where @ = (k1, A1, ..., km, A\m) is the parameter vector of the series system and 6; = (kj, \;) is the parameter
vector of the 7 component.

Proof. The proof for the reliability function follows from Theorem ?7,

HRt)\k

Plugging in the Weibull component reliability functions obtains the result
m t k}j m t k?j
o-1eof-(5) f-oof-2(5) }
j=1 j=1
The proof for the hazard function follows from Theorem 77,
£\ Rt
h;(t; 0;) (- .
=S o) =35 ()
Jj=1
The proof for the pdf follows from Theorem ??. By definition,
sz' (t; 9) = hTi (t; 0)RT,i (t; 9)

Plugging in the failure rate and reliability functions given respectively by Equations (??) and (??) completes
the proof. O

6The exponential distribution is a special case of the Weibull distribution when kj = 1.
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In Section 7?7, we discussed the concept of reliability, with the MTTF being a common measure of
reliability. In the case of Weibull components, the MTTF of the j*" component is given by

MTTF; = /\jF<1 + ;), (27)
J

where T" is the gamma function. We mentioned that the MTTF can sometimes be a poor measure of
reliability, e.g., the MTTF and the probability of failing early can both be large. The Weibull is a good
example of this phenomenon. If k; > 1, the lifetime distribution of the 4 component is fat-tailed and
it can exhibit both a large MTTF and a high probability of failing early. The probability of component
failure given by Equation (??) is a particularly useful measure of component reliability relative to the other
components in the system.

6.1 Likelihood Model

In Section 7?7, we discussed two separate kinds of likelihood contributions, masked component cause of failure
data (with exact system failure times) and right-censored data. The likelihood contribution of the i system
is given by the following theorem.

Theorem 6.2. Let §; be an indicator variable that is 1 if the i*" system fails and 0 (right-censored) otherwise.
Then the likelihood contribution of the i*" system is given by

exp{_ E;nﬂ(,t\f)k? } Zjeci %(%)krl if 6; =1,

L;(0) x N (28)
exp{- £, (5" | 6= 0,
Proof. By Theorem ??, the likelihood contribution of the i*" system is given by
Li(®)ocq (54 6) 1
RTI(S“Q) Zjem, hj(si;ej) lf 57, =1.

By Equation (??), the system reliability function is given by

m t: 2

Ry, (t:;0) =eXp{—Z<)fj> }

j=1

where @ = (k1, A1, ..., km, Am) is the parameter vector and by Equation (??), the hazard function of the 5"

component is given by

k. tl kj—1
h;(ts; 0;) = ;(/\) :
] J

where 8; = (kj, \;) is the parameter vector of the j*® component. Plugging these into the likelihood
contribution function obtains the result. O

Taking the log of the likelihood contribution function obtains the following result.
Corollary 6.1. The log-likelihood contribution of the it" system is given by
mo o\ ki [t kj—1
4(8) = —;(AJ) +3; 10g<jezw>\j<)\j) ) (29)

where we drop any terms that do not depend on @ since they do not affect the MLE.
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See Appendix ?? for the R code that implements the log-likelihood function for the series system with
Weibull components.

We find an MLE by solving (?7?), i.e., a point 0= (]%1’ Mook, S\W) satisfying V.gﬁ(@) = 0, where Vg/
is the gradient of the log-likelihood function (score) with respect to 8. To solve this system of equations, we
use Newton-like methods, which sometimes require both the gradient and the Hessian of the log-likelihood
function. We analytically derive the score but we do not do the same for the Hessian of the log-likelihood
function. Our reasoning is based on the following two observations:

e The score function is relatively easy to derive, and it is useful to have for computing gradients efficiently
and accurately, which will be useful for accurately numerically approximating the Hessian of the log-
likelihood function.

e The Hessian is tedious and error prone to derive, and Newton-like methods often do not require the
Hessian to be explicitly computed.

The following theorem derives the score function.

Theorem 6.3. The gradient of the log-likelihood contribution of the it" system is given by

_(06:(6) 06i(0)  0:(6) 00i(0)
VEAG)-( Ok = O\ " Oky, T O ) (30)
where .
94i(6) (ti>’“"iog(ti)+ i (0) (ke log () | (31)
=\ 1 N k] ] k‘j—l d;=1Arecc;
S A S S 1T
and ) -
\ ky o\
ot )_h(tz)’“ GG (32)
- o k-1 di=lArec;:
AN TRl )

The result follows from taking the partial derivatives of the log-likelihood contribution of the i*" system
given by Equation (??). It is a tedious calculation so the proof has been omitted, but the result has been
verified by using a very precise numerical approximation of the gradient.

By the linearity of differentiation, the gradient of a sum of functions is the sum of their gradients, and
so the score function conditioned on the entire sample is given by

Vi(0) = Xn: V(). (33)

6.2 Weibull Series System: Homogeneous Shape Parameters

In a series system, the system is only as reliable as its weakest link (weakest component). In a well-designed
series system, there is no single component that is much weaker than the others. In the case of components
with Weibull lifetimes, this implies the shape parameters are homogenous and the scale parameters are
homogenous. The shape parameters are particularly important since they determine the failure behavior of
the components.

When the shape parameters are homogenous, the lifetime of the series system with components that are
Weibull distributed is also Weibull distributed, as shown in the following theorem.

Theorem 6.4. If the shape parameters of the components are homogenous, then the lifetime series sys-
tem follows a Weibull distribution with a shape parameter k given by the identical shape parameters of the
components and a scale parameter A given by

A= (i /\j‘k> _1/k, (34)

where \; is the scale parameter of the j™ component.
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Proof. Given m Weibull lifetimes Tjq,...,T;, with the same shape parameter k& and scale parameters

A1, - -+, Am, the reliability function of the series system is given by
m ¢ k
o =enl-3 (5 ) }

To show that the series system lifetime is Weibull, we need to find a single scale parameter \ such that

R, (t;0) = eXP{-(f\)k},

1

which has the solution
=

>
H?E‘.—‘
E

(

Theorem 6.5. If a series system has Weibull components with homogeneous shape parameters, the compo-
nent cause of failure is conditionally independent of the system failure time:

+...+A%)
O

—k
S
k"

27;1 )\l

Proof. By Theorem ??, the conditional probability of the j*" component being the cause of failure given the
system failure time is given by

Pr{Ki = j|T; = t} — fKiaTi(-]7t;0) _ hj(t; k’,)\j)RTi(f;G)

fr(t:0) hry(5:0;)Rr, (:6)
hy(tk, ) (e ()"

SRR T £ SR
O

According to the bias-variance trade-off, we expect the MLE of the homogenous model, which has m + 1
parameters (m being he number of components in the series system), to be more biased but have less variance
than the MLE of the full model, which has 2m parameters.

7 Simulation Study: Series System with Weibull Components

In this simulation study, we assess the sensitivity of the MLE and BCa confidence intervals to various
simulation scenarios for the likelihood model defined in Section ??7. We begin by specifying the parameters
of the series system that will be the central object of our simulation study. We consider the data in [? ], in
which they study the reliability of a series system with three components. They fit Weibull components in a
series configuration to the data, resulting in an MLE with shape and scale estimates given by the first three
components in Table

In Section 77, we defined a well-designed series system as one that consists of components with similar
reliabilities, where we define reliability in three ways: the reliability function, MTTF, and probability that a
specific component will be the cause of failure (which is a measure of relative reliability of the components).
We will use these three measures of reliability to assess the base system. The base system defined in Table

The reliability function, unlike the other two measures of reliability, is not a summary statistic of relia-
bility, but is rather a function of time. Since most of our simulations have the right-censoring time set to the
82.5% quantile of the series system, which we denote here by 7 825, we can compare the reliability functions
of the components at this time. We see that the reliability of the components at this right-censoring time are
similar, with component 1 being the most reliable and component 3 being the least reliable. These results
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Table 2: Weibull Components in Series Configuration

Shape (kj) Scale ()‘j) MTTFJ PI“{KZ = j} Rj(’rovggg);kj, )\j)
Component 1 1.2576 994.3661 | 924.869 0.169 0.744
Component 2 1.1635 | 908.9458 | 862.157 0.207 0.698
Component 3 1.1308 840.1141 | 803.564 0.234 0.667
Component 4 1.1802 940.1342 | 888.237 0.196 0.711
Component 5 1.2034 923.1631 | 867.748 0.195 0.711
Series System NA NA | 222.884 NA 0.175

are consistent with the previous analysis based on the MTTF and probability of component cause of failure
being similar.

The shape parameters for each component is larger than 1, which means each component has a failure
characteristic that is more wear-out than infant mortality. The system as a whole is therefore more likely to
fail due to wear-out failures than infant mortality. This too is consistent with a well-designed system.

Homogenous Shape Parameters The base system is a well-designed system, and so it is likely that the
likelihood model that assumes homogeneous shape parameters described in Section ?? would provide a good
fit to any data generated from this system. We performed a preliminary investigation into this by simulating
data from the base system, and deviations from the base system that make the system less well-designed,
and fitting the homogeneous model to the data. We found that the MLE of the homogeneous model was
very close to the true parameter values for slight deviations from the base system, but the MLE was biased
for larger deviations from the base system. This is consistent with the bias-variance trade-off, where the
MLE of the homogeneous model is more biased but has less variance than the MLE of the full model. We
do not explore this further in this simulation study, but it is an interesting avenue for future research.

7.1 Performance Metrics

In this section, we describe the measures we use to assess the performance of the MLE and the BCa confidence
intervals in our simulation study. We assess two important properties of the MLE for each simulation scenario:

o Accuracy (Bias): A pivotal metric is the proximity of the MLE’s expected value to the true parameter
value. Higher accuracy is demonstrated by a closer proximity. We estimate the accuracy in our
simulation study by plotting the mean of the MLE.

e Precision: Another essential measure is the variability of the MLE across samples. Higher precision is
demonstrated by smaller variability. We estimate this in our simulation study by plotting the quantiles
of the sampling distribution of the MLE.

In parallel, we assess the following properties of the BCa confidence intervals described in Section ?7:

e Accuracy (Coverage Probability): In Section ??, we discussed the importance of the coverage
probability of the confidence intervals. The coverage probability is the proportion of the computed
confidence intervals that contain the true parameter values. Ideally, we would like the CIs to contain
the true parameter values around 95% of the time, which is the nominal coverage probability. In this
case, the Cls are said to be correctly specified, but we consider anything over 90% satisfactory.

e Precision: A useful measure of the precision of the confidence intervals are their widths. Narrower,
consistent intervals across samples indicate higher precision. We measure this in our simulation study
by plotting the median-aggregated Cls, where we aggregate the Cls by taking the medians of the upper
and lower bounds. This gives us a sense of the central tendency of the CIs. There is a trade-off
between accuracy and precision, where we want the ClIs to be as narrow as possible with nominal
coverage probability.
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If the confidence intervals are not accurate, then we cannot be sure that the intervals contain the true
parameters. If the confidence intervals are not precise, then there is significant uncertainty in the locations
of the true parameters. In either case, we cannot be confident in the results of the analysis, and we should
consider alternative methods for estimating the parameters of the series system. However, we will see that
the BCa confidence intervals are accurate and precise for most of the simulation scenarios we consider,
providing a reliable method for estimating the parameters of the series system.

Finally, we also consider the convergence rate of the MLE, discussed in Section ?7. We take a convergence
rate less than 95% to be evidence that the MLE is not a robust or reliable estimator in these cases, due to
the insufficient information.

7.2 Data Generating Process

In this section, we describe the data generating process for our simulation studies. It consists of three parts:
the series system, the candidate set model, and the right-censoring model.

Series System Lifetime We generate data from a series system with m = 5 components with Weibull
lifetimes. As described in Section ??, the j* component of the i*" system has a lifetime distribution given
by

Tij ~ Weibull(k;j, /\J)

and the lifetime of the series system composed of m Weibull components is defined as
T, =min{T;1, ..., Tim}-

To generate a data set, we first generate the m component failure times, by efficiently sampling from their
respective distributions, and we then set the failure time ¢; of the system to the minimum of the component
failure times.

Right-Censoring Model We employ a simple right-censoring model, where the right-censoring time is
fixed at some known value, e.g., an experiment is run for a fixed amount of time 7, and all systems that
have not failed by the end of the experiment are right-censored. The censoring time S; of the i*" system is
thus given by

S; = min{T;,7}.

So, after we generate the system failure time T;, we generate the censoring time S; by taking the minimum
of T; and 7.

In the simulation study, we parameterize instead by a right-censoring quantile ¢ for the series system,
where ¢ is the proportion of systems that are expected to fail before the right-censoring time, denoted by 7.
This is given by

7o = Fr'(¢:6),

where Fr. 1is the inverse CDF of the series system. To solve for the right-censoring time 74 of the series
system, we define a function g as
9(1q) = Fr,(74;0) — g
and find its root using the Newton’s method. See Appendix 77 for the R code that implements this procedure.
For instance, if ¢ = 0.825 (which is what we set it to in some of simulation scenarios), then 82.5% of the
series systems are expected to fail before the corresponding right-censoring time 7, and 17.5% of the systems
are expected to be right-censored.

Masking Model for Component Cause of Failure We must generate data that satisfies the masking
conditions described in Section ?7?7. There are many ways to satisfy the masking conditions. We choose a
simple method, which we call the Bernoulli masking model. In this model, we satisfy Conditions 7?7, 7?7, and
?? by generating a candidate set ¢; for each system ¢ as follows:

o If the j*" component fails, it is deterministically placed in the candidate set. This satisfies Condition
77, PI‘{KZ‘ € Cz} =1.
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o For each of the m — 1 components that did not fail, we generate a Bernoulli random variable X; with
probability p of being 1, where p is a fixed probability. If X; = 1, the j*! component is placed in the
candidate set, which satisfies Condition 77, since the Bernoulli random variables are not a function of
0.

e Condition 7?7 may be the least intuitive of the three conditions. It states that
PI‘{CZ = CZ“Ki = j, Tz = ti} = PI‘{CZ = CZ“Ki = j/,Ti = ti}

for all j,j" € ¢;. In words, this means that the probability of the candidate set C; being equal to some
set ¢; is the same when conditioned on any component in ¢; being the cause of failure and the system
failure time ¢;. This is satisfied by the Bernoulli masking model since, first, it is independent of the
system failure time ¢;, and second, the probability that a non-failed component is in the candidate set
is fixed at some constant p for all components. To see this, consider the following example. Suppose
we have a system with m = 3 components, and the first component is the cause of failure. Then the
probability of the candidate set being equal to some set ¢; is given by

(1-p)? ife={1}
p(1—p) ife; ={1,2}
(1-p)p ife;={1,3}
p? if ¢; ={1,2,3},

where a non-failed component is in the candidate set with probability p and otherwise it is not placed
in the candidate set with probability 1 — p. Now, let’s change the component cause of failure to the
second component:

(1-p)? ife={2}
p(1—p) ife;={1,2}
(1-p)p ife; ={2,3}
p? if ¢; ={1,2,3}.

Pr{C;=c|K;=2T,=t;} = (36)

The same pattern holds for the third component. We see that the probability of the candidate set
being equal to some set ¢; is the same for all components in that ¢; and for all system failure times
t;, e.g., if the probability that ¢; = {1,2} is p(1 — p) when we condition in either component 1 or
component 2 being the cause of failure, which satisfies Condition 77.

There are many more ways to satisfy the masking conditions, but we choose the Bernoulli masking

model because it is simple to understand and allows us to easily vary the masking probability p for our
simulation study.

See Appendix 77 for the R code that implements this model.

7.3 Overview of Simulations

We define a simulation scenario to be some combination of n (sample size), p (masking probability in our
Bernoulli masking model), and ¢ (right-censoring quantile). We are interested in choosing a small number
of scenarios that are representative of real-world scenarios and that are interesting to analyze. For how we
run a simulation scenario, see Appendix 7?7, but here is an outline of the process:

1. Parameter Initialization: Fix a combination of simulation parameters to some value, and vary the
remaining parameters. For example, if we want to assess how the sampling distribution of the MLE
changes with respect to sample size, we might choose some particular values for p and ¢ and then vary
the sample size n over the desired range.

2. Data Generation: Simulate R > 300 datasets from the Data Generating Process (DGP) described
in Section ?7.
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3. MLE Computation: Compute an MLE for each of the R datasets.

4. Statistical Evaluation: For each of these R MLEs, compute some function of the MLE, like the
BCa confidence intervals. This will give us R statistics as a Monte-carlo estimate of the sampling
distribution of the statistic.

5. Distribution Property Estimation: Use the R statistics to estimate some property of the sampling
distribution of the statistic, e.g., the mean of the MLE or the coverage probability of the BCa confidence
intervals, with respect to the parameter we are varying in the scenario, e.g., assess how the coverage
probability of the BCa confidence intervals changes with respect to sample size.

In this study, we are focusing on three distinct scenarios. Section ??7 explores how varying the right-
censoring affects the estimator with the masking and sample size fixed. Section ?? explores how varying
the masking affects the estimator with the right-censoring and sample size fixed. Section 7?7 explores how
varying the sample size affects the estimator with the right-censoring and masking fixed. Each scenario
aims to provide insights into how these parameters influence the behavior of MLEs, which is crucial for
understanding their performance in real-world applications.

7.4 Scenario: Assessing the Impact of Right-Censoring

In this scenario, we use the well-designed series system described in Table

e We vary the right-censoring quantile (¢) from 60% to 100% (no right-censoring). We denote the
corresponding right-censoring time by 7,.

o We fix the Bernoulli masking probability p to 21.5% based on estimates from masked datam

e We fix the sample size n to 90, which is small enough to show the impact of right-censoring on the
MLE, but large enough to obtain reasonable convergence rates.

In Figure 77, we show the effect of right-censoring on the MLEs for the shape and scale parameters. The
top four plots only show the effect on the MLEs for the shape and scale parameters of components 1 and
3. We chose these components because they are the most and least reliable components, respectively, and
so we expect them to be the most and least sensitive to right-censoring. The bottom two plots show the
coverage probabilities for all parameters.

7.4.1 Background

When a right-censoring event occurs, in order to increase the likelihood of the data, the MLE is nudged in
a direction that increases the probability of a right-censoring event at time 7, which is given by Rz, (¢;0),
representing a source of bias in the estimate.

To increase Ry, (7,), we move in the direction (gradient) of these partial derivatives. The partial deriva-
tives of Ry, (74) are given by

\" k;
ZoMaNa) . - -
8)\] RTz (TQ70) <)\]> )\]7

for 5 =1,...,m. We see that these partial derivatives are related to the score of a right-censored likelihood
contribution in Theorem ?7. Let us analyze the implications these partial derivatives have on the MLE:

o Effect of Increasing Right-Censoring Quantile: As the right-censoring quantile ¢ increases (7,
increases), Rr,(74;0) decreases, reducing the impact of right-censoring on the MLE. This behavior is
evident in Figure 77.

7See ‘Table 2: Example Data for a Series System’ in [? ] for details on the masked data.
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Figure 2: Right-Censoring Quantile (¢) vs MLE (p = 0.215,n = 90)
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o Positive Bias in Scale Parameters: The partial derivatives with respect to the scale parameters
are always positive. This means that right-censoring introduces a positive bias in the scale parameter
estimates, making right-censoring events more likely. The extent of this bias is related to the amount
of right-censoring (1 — ¢), as seen in Figure ?7.

e Conditional Bias in Shape Parameters: The partial derivative with respect to the shape parameter
of the j*" component, k;, is non-negative if \; > 7, and otherwise negative. In our well-designed series
system, the scale parameters are large compared to most of the right-censoring times 7,4, so the MLE
nudges the shape parameter estimates in a positive direction to increase the probability Ry, (7,) of a
right-censoring event at time 7,. We see this in Figure 77, where the shape parameter estimates are
positively biased for most of the quantiles q.

7.4.2 Key Observations

Coverage Probability (CP) The confidence intervals are generally correctly specified, obtaining
coverages above 90% for most of the parameters across the entire range of right-censoring quantiles, and
they are converging to the nominal 95% level as the right-censoring quantile increases. This suggests that
the bootstrapped ClIs will contain the true value of the parameters with the specified confidence level with
high probability. The Cls are neither too wide nor too narrow.

However, the scale parameters are better calibrated than the shape parameters. The scale parameters
are consistently around the nominal 95% level for all right-censoring quantiles, but the shape parameters
are consistently less correctly specified, suggesting that the shape parameters are more difficult to estimate
than the scale parameters.

We also see that the coverage probabilities for k; and Ay generally have worse coverage than the other
parameters. This is likely due to the fact that component 1 is the most reliable component, and so it is less
likely to fail before the right-censoring time 7,. This means that the likelihood contribution of component 1 is
less informative than the other components. Conversely, we see that k3 and A3 generally have better coverage
than the other parameters. This is likely due to the fact that component 3 is the least reliable component,
and so it is more likely to fail before the right-censoring time. This means that the likelihood contribution
of component 3 is more informative than the other components in the presence of right-censoring.

Dispersion of MLEs The shaded regions representing the 95% probability range of the MLEs get
narrower as the right-censoring quantile increases. This is an indicator of the increased precision in the
estimates as more data is available due to decreased censoring.

We see that the dispersion of the MLEs for k; and A\; are much larger than the dispersion of the MLEs
for k3 and A3. This is consistent with the previous analysis for the coverage probabilities.

Median-Aggregated CIs The median CI (vertical blue bars) decreases in length as the right-censoring
quantile increases. This suggests that the bootstrapped CIs become more consistent and centered around
a tighter range as the right-censoring quantile increases, while maintaining a good coverage probability. As
right-censoring events become less likely, the bootstrapped Cls gravitate closer to each other and the true
parameter values.

For small right-censoring quantiles, the CIs are quite large, which was necessary to maintain good cov-
erage. The estimator is sensitive to the data, and so the bootstrapped Cls are wide to account for this
sensitivity when the sample contains insufficient information due to censoring. Again, we see that the
median-aggregated Cls for k1 and A; are much wider than the median-aggregated Cls for k3 and As.

Bias of MLEs The red dashed line indicating the mean of MLEs initially is quite biased for the shape
parameters, but quickly diminishes to negligible levels as the right-censoring quantile increases. The bias for
the shape parameters never reach zero, but this is potentially due to masking.

The bias for the scale parameters is quite small and remains stable across different right-censoring quan-
tiles, suggesting that the scale MLEs are reasonably unbiased. It could be the case that masking or other
factors are counteracting the bias due to right-censoring.
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Again, we see that the bias for k1 and A; is much greater than the bias for k3 and A3, which is consistent
with the previous analysis.

Convergence Rate The convergence rate increases as the right-censoring quantile ¢ increases. This
is consistent with the expectation that more censoring reduces the information in a sample, making the
likelihood function less informative and more difficult to identify the parameters that maximize it. We see
that the convergence rate is around 95% or greater for right-censoring quantiles ¢ > 0.7, but drops below
95% for ¢ < 0.7.

7.4.3 Summary

In this scenario, we find that right-censoring significantly influences the MLEs of shape and scale parameters.
As the degree of right-censoring decreases, the precision of these estimates improves, and the bias in the shape
parameters diminishes, although it never fully disappears, possibly due to masking effects. Additionally,
Bootstrapped (BCa) confidence intervals generally show good coverage probabilities, particularly for scale
parameters, and become more focused as right-censoring decreases. As expected, the estimates for the most
reliable component are more sensitive to right-censoring than the least reliable component. We also find
that the convergence rate of the MLE decreases as the degree of right-censoring increases, suggesting that
the MLE is less reliable in these cases.

These insights set the stage for the subsequent scenario on masking probability, where we will explore how
masking adds another layer of complexity to parameter estimation and how these effects might be mitigated.

7.5 Scenario: Assessing the Impact of Masking Probability for Component
Cause of Failure

In this scenario, we use the well-designed series system described in Table

e We vary the Bernoulli masking probability p from 10% to 70%E|

o We fix the right-censoring quantile ¢ to 82.5%, which means the probability of a right-censoring event
is 17.5%. This is less than the masking probability, making the masking probability the dominant
source of uncertainty.

o We fix the sample size to n to 90, which is small enough to show the impact of masking on the MLE,
but large enough to obtain reasonable convergence rates.

In Figure 7?7, we show the effect of the masking probability p on the MLE for the shape and scale
parameters. The top four plots only show the effect on the MLE for the shape and scale parameters of
components 1 and 3, since the rest demonstrated similar results. The bottom left plot shows the coverage
probabilities for all parameters and the bottom right plot shows the convergence rate of the MLE.

7.5.1 Background

Masking introduces a layer of complexity that is different from right-censoring. While right-censoring deals
with the uncertainty in the timing of failure, masking adds ambiguity in identifying which component actually
failed. In the Bernoulli masking model, the failed component is guaranteed to be in the candidate set and
each non-failed component is included with a probability p. This has the following implications on the MLE:

e Ambiguity: A higher p makes larger candidate sets more probable, making it less clear which pa-
rameter estimates should be adjusted to make the data more likely in the MLE. This is particularly
problematic for components that are not the cause of failure, since the MLE will adjust their parameters
to make them more likely to be the cause of failure, which is not necessarily correct.

8The probability that the component cause of failure is masked is the probability that at least one functional component
will be in the candidate set, which is given by 1 — (1 —p)m*l7 where m denotes the number of components in the system and p
is the Bernoulli masking probability. So, for m = 5 and p ranges from 10% to 70%, the probability that the component cause
of failure is masked ranges from 34.4% to 99.2%.
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Coverage Probability (CP)

Figure 3: Component Cause of Failure Masking (p) vs MLE (¢ = 0.825,n = 90)
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e Bias: In an ideal scenario, knowing which component failed would allow the MLE to make that com-
ponent’s failure more likely and a right-censoring effect would be applied to the non-failed components.
However, a larger masking probability p introduces uncertainty, causing the MLE to adjust the esti-
mates for the parameters of the non-failed components to be more likely to fail at the observed failure
time while simultaneously applying a right-censoring effect to the other components, including the
failed component. This introduces a bias similar to the bias introduced by right-censoring, and the
greater the masking probability p, the greater the bias.

e Precision: As the masking probability p increases, the likelihood function becomes less informative,
reducing the precision of the estimates.

7.5.2 Key Observations

Coverage Probability (CP) For the scale parameters, the 95% CI is correctly specified for Bernoulli
masking probabilities up to p = 0.7, which is quite significant, obtaining coverages over 90%. For the shape
parameters, the 95% CI is correctly specified for masking probabilities only up to p = 0.4, which is still large.
At p = 0.4, the coverage probability is around 90, but continues to drop after that point well below 90%.
This suggests that the shape parameters are more difficult to estimate than the scale parameters, which is
consistent with the previous scenario where we varied the amount of right-censoring.

The BCa confidence intervals are correctly specified for most realistic masking probabilities, constructing
CIs that are neither too wide nor too narrow, but when the masking is severe and the sample size is small,
one should take the CIs with a grain of salt.

Dispersion of MLEs The shaded regions representing the 95% quantile of the MLEs become wider
as the masking probability increases. This is an indicator of the decreased precision in the estimates when
provided with more ambiguous data about the component cause of failure.

Median-Aggregated CIs The median-aggregated Cls (vertical dark blue bars) show that the BCa
CIs are becoming more spread out as the masking probability increases. They are also asymmetric, with
the lower bound being more spread out than the upper-bound, which is consistent with the behavior of the
dispersion of the MLEs. The width of the ClIs consistently increase as the masking probability increases,
which we intuitively expected given the increased uncertainty about the component cause of failure.

Bias of MLEs The mean of the MLE (red dashed lines) demonstrates a steadily increasing positive
bias as the masking probability increases. This is consistent with the expectation that the MLE will apply
an increasing right-censoring effect to the estimates as the masking probability increases.

Convergence Rate The convergence rate decreases as the Bernoulli masking probability p increases.
This is consistent with the expectation that a higher masking probability decreases the information the
sample contains about the parameters. We see that the convergence rate remains above 95% for masking
probabilities up to p = 0.4, but drops below 95% for p > 0.4. This is consistent with behavior of the CPs,
which drop below 90% for p > 0.4.

7.5.3 Summary

In this scenario, we examine the influence of masking probability p on the MLE, keeping the sample size
and right-censoring constant. As the masking probability increases, the precision of the MLEs decreases,
and the coverage probability of the Cls begins to drop. However, even at fairly significant Bernoulli masking
probabilities, particularly for the scale parameters, the CIs have good coverage. These observations highlight
the challenges of parameter estimation under varying degrees of masking and set the stage for the subsequent
scenario on sample size, which shows how increasing the sample size can mitigate the effects of both right-
censoring and masking.
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7.6 Scenario: Assessing the Impact of Sample Size

In this scenario, we want to assess how the sample size can mitigate the affects of right-censoring and masking
previously discussed. We use the well-designed series system described in Table

o We vary the sample size n from 50 (small sample size) to 500 (large sample size).
o We fix the right-censoring quantile ¢ to 82.5%.
o We fix the masking probability p to 21.5%.

In Figure 7?7, we show the effect of the sample size n on the MLEs for the shape and scale parameters.
The top four plots only show the effect on the MLEs for the shape and scale parameters of components
1 and 3, component 1 being the most reliable component in the system and component 3 being the least
reliable component. The bottom left plot shows the coverage probabilities of the confidence intervals for all
parameters and the bottom right plot shows the convergence rate of the MLE.

7.6.1 Key Observations

Coverage Probability (CP) The confidence intervals are correctly specified, obtaining coverages
above 90% for most of the parameters across the entire sample size range, and they are converging to the
nominal 95% level as the sample size increases. The BCa Cls contain the true value of the parameters with
the specified confidence level, and the CIs neither too wide nor too narrow.

However, as in the previous scenario where we varied the right-censoring amount, the scale parameters
have better coverage than the shape parameters. The scale parameters are consistently around the nominal
95% level for all sample sizes, but the shape parameters lag behind, suggesting that the shape parameters
are more difficult to estimate than the scale parameters.

Dispersion of MLEs The shaded regions representing the 95% quantile range of the MLEs become
more narrow as the sample size increases. This is an indicator of the increased precision in the estimates
when provided with more data.

We also see that the dispersion of the MLEs for k; and A; are much larger than the dispersion of the
MLEs for k3 and A3. This is consistent with the previous analysis in the right-censoring scenario.

Median-Aggregated CIs The median-aggregated Cls (vertical dark blue bars) show that the ClIs are
becoming less spread out as the sample size increases, indicating that they are becoming more consistent
and centered around a tighter range while maintaining good coverage probability. The end result is that
we can construct more precise and accurate Cls with larger samples and thus we can make more confident
inferences about the true parameter value.

The estimator is quite sensitive to the data, and so the Cls are wide to account for this sensitivity when
the sample size is small and not necessarily representative of the true distribution.

We also observe that the upper bound of the CI is more spread out than the lower bound. This is
consistent with the behavior of the dispersion of the MLEs, which have a positive bias. Thus, the Cls are
accounting for this bias by being more spread out in the direction of the bias.

Bias of MLEs The mean of the MLE (red dashed lines) initially has a large positive bias, but diminishes
to negligible levels as the sample size increases. In the previous right-censoring scenario, the bias never
reached zero, but we see that in this scenario, at around a sample size of 250, the estimator is essentially
unbiased, suggesting that there is enough information in the sample to overcome the bias from the right-
censoring (¢ = 0.825) and masking (p = 0.215) effects.

Convergence Rate The convergence rate increases as the sample size n increases. This is consistent
with the expectation that more data provides more information about the parameters, making the likelihood
function more informative and easier to identify the parameters that maximize it. We see that the convergence
rate is 95% or greater for sample sizes n > 100 given moderate right-censoring and masking. Given how
quickly the convergence rate increased, we anticipate that even for extreme censoring and masking, the
convergence rate would likely rapidly increase to over 95% as the sample size increases. However, for sample
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sizes n < 100, at least for series systems with m = 5 components with Weibull lifetimes, the convergence
rate is low. For small samples, any estimates should be taken with a grain of salt.

7.6.2 Summary

In this scenario, we delve into the mitigating effects of sample size on the challenges identified in previous
scenarios concerning right-censoring and masking. The precision and accuracy of the MLE rapidly improves
with a bias approaching zero. This is consistent with statistical theory and suggests that increasing the
sample size can mitigate the effects of right-censoring and masking. The BCa CIs also narrow and become
more reliable (with coverage probabilities approaching the nominal 95% level) with larger samples, reinforcing
the role of sample size in achieving robust estimates.

8 Future Work

This paper developed maximum likelihood techniques and simulation studies to estimate component relia-
bility from masked failure data in series systems. The key results were:

e The likelihood model enabled rigorous inference from masked data via right-censoring and candidate
sets.

e Despite masking and censoring, the MLE demonstrated accurate and robust performance in simulation
studies.

e BCa confidence intervals had good coverage probability even for small samples.

e Estimation of shape parameters was more challenging than scale parameters.

Building on these findings, next we consider promising areas for future work.

Relaxing Masking Conditions To further generalize the likelihood model, we can relax conditions 77,
7?7, and ?? on the masking model. We could perform a sensitivity analysis to violations of these conditions,
which would provide insights into the robustness of the likelihood model, or we could develop alternative
likelihood models that are less stringent.

Deviations from Well-Designed Series Systems Assess the sensitivity of the estimator to deviations
from well-designed series systems, in which there are no components that are significantly more likely to
fail than others. We could vary the probabilities of component failure (while keeping the system reliability
constant) to assess how the estimator behaves when the system deviates from the well-designed system
criteria. We did some preliminary investigation of this, and we found that the estimator was quite sensitive
to deviations in system design.

Homogenous Shape Parameter Assess the trade-off between using the homogenous shape parameter
model and the full model. The homogenous shape parameter model assumes that the shape parameters
are equal, which is a simplification of the full model. We could assess the sensitivity of the estimator to
deviations in the homogenous shape parameter assumption. By the bias-variance trade-off, we expect that
the homogenous shape parameter model will have less variance but more bias than the full modelﬂ We did
some preliminary investigation of this, and we found that the homogenous shape parameter model worked
quite well for moderate masking and censoring when the true system was a reasonably well-designed series
system, and only had more bias than the full model when the sample size was extremely large.

9The bias-variance trade-off is a fundamental trade-off in statistics that states that as the bias of an estimator decreases,
its variance increases, and vice versa. An estimator with more variance is more sensitive to the data, while an estimator with
more bias is less sensitive to the data. If the assumption of homogeneity is reasonable, then the bias can be quite small while
the variance is also small, potentially making the homogenous shape parameter model a good choice in such cases.
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Semi-Parametric Bootstrap We used the non-parametric bootstrap to construct confidence intervals,
but we could also investigate the semi-parametric bootstrap. In the semi-parametric bootstrap, instead of
resampling from the original data, we sample component lifetimes from the parametric distribution fitted to
the original data and sample candidate sets from the conditional empirical distribution of the candidate sets
in the original data. This is a compromise between the non-parametric bootstrap and the fully parametric
bootstrapE

Regularization Methods Investigate regularization methods like data augmentation and penalized like-
lihood to improve parameter estimates, in particular shape parameter estimates.

Extending the Likelihood Model with Predictors Our research is based on a general likelihood
model. A straightforward extension is to integrate predictors, allowing each observation’s hazard function
to be influenced by specific variables, such as in the Cox proportional hazards model [? |, but any function
that satisfies the fundamental mathematical principles of a hazard function could be used. This would allow
the likelihood model to be more flexible and adaptable to a wider range of applications.

Bootstrapped Prediction Intervals In this paper, we applied the bootstrap method to construct confi-
dence intervals for the parameter 8, which generated correctly specified confidence intervals in our simulation
study. We could do a similar analysis for other statistics, in particular prediction intervals, which are useful
for predicting the reliability of a system or a component at a future time.

The current results provide a solid foundation for extensions like these that can further refine the methods
and expand their applicability. By leveraging the rigorous likelihood framework and simulation techniques
validated in this study, future work can continue advancing the capability for statistical learning from masked
reliability data.

9 Conclusion

This work presented maximum likelihood techniques to estimate component reliability from masked failure
data in series systems. The methods demonstrated accurate and robust performance despite significant
challenges introduced by masking and right-censoring.

Simulation studies revealed that for our well-designed series system with Weibull component lifetimes,
right-censoring and masking positively biased the estimates and the more reliable components were more
sensitive to these effects. Additionally, the shape parameters were more difficult to estimate than the scale
parameters. However, with sufficiently large sample sizes, these difficulties were overcome, suggesting enough
information existed in the data to mitigate censoring and masking effects.

Despite the challenges, the bootstrapped bias-corrected and accelerated confidence intervals were gener-
ally correctly specified with good overall coverage probabilities, even for relatively small sample sizes. This
good empirical coverage demonstrates the reliability of these intervals for statistical inference, striking a
balance between precision and robustness. The modeling framework offers a statistically rigorous method
for estimating latent component properties based on limited observational data concerning system reliabil-
ity. The simulation studies validate these techniques and provide practical insights into their efficacy under
diverse real-world scenarios. This enhances our capacity for statistical learning from obscured system failure
data.

Appendices

A Series System with Weibull Component Lifetimes

These functions are implemented in the R library wei.series.md.c1.c2.c3, which is available on GitHub at
github.com/queelius/wei.series.md.cl.c2.c3[? |. They are for series systems with Weibull component

10The fully parametric bootstrap is not appropriate for our likelihood model because we do not assume a parametric form
for the distribution of the candidate sets.

31


https://github.com/queelius/wei.series.md.c1.c2.c3

lifetimes with masked data described in Section ??7. For clarity and brevity, we removed some of the
functionality and safeguards in the actual code, but we provide the full code in the R package.

A.1 Log-likelihood Function

The log-likelihood function is the sum of the log-likelihood contributions for each system. For our series
system with Weibull component lifetimes, we analytically derived the log-likelihood function in Theorem 7?
and implemented it in the loglik_wei_series_md_c1_c2_c3 R function below.

#' Generates a log-likelihood function for a series system with Weibull
#' component lifetimes for masked data.
#l
#' @param df masked data frame
#' Oparam theta parameter wvector
#' Oreturns log-likelihood function
loglik_wei_series_md_cl_c2_c3 <- function(df, theta) {
n <- nrow(df)
C <- md_decode_matrix(df, "x")
m <- ncol(C)
delta <- df[["delta"]]
shapes <- thetal[seq(l, length(theta), 2)]
scales <- thetal[seq(2, length(theta), 2)]
t <- df[[lifetime]]
s <- 0
for (i in 1:n) {
s <= s - sum((t[i] / scales) “shapes)
if (deltalil) {
s <- s + log(sum(shapes[C[i, 1] / scales[C[i, ]] *
(t[i] / scales[C[i, 11)~(shapes[C[i, 11 - 1)))
}
}

return(s)

A.2 Score Function

The score function is the gradient of the log-likelihood function. For our series system with Weibull com-
ponent lifetimes, we analytically derived the score function in Theorem ?? and implemented it in the
score_wei_series_md_cl_c2_c3 R function below.

#' Computes the score function for a series system with Wetbull component
#' lifetimes for masked data.
#I
#' @param df masked data frame
#' @param theta parameter vector
#' Oreturns score function
score_wei_series_md_cl_c2_c3 <- function(df, theta) {
n <- nrow(df)
C <- md_decode_matrix(df, "x")
m <- ncol(C)
delta <- df[["delta"]]
t <- df[[lifetime]]
shapes <- thetal[seq(l, length(theta), 2)]
scales <- theta[seq(2, length(theta), 2)]
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shapes.scr <- scales.scr <- rep(0, m)

for (i in 1:n) {
shapes.rt <- -(t[i] / scales) “shapes * log(t[i] / scales)
scales.rt <- (shapes / scales) * (t[i] / scales) “shapes
shapes.trm <- scales.trm <- rep(0, m)

if (deltalil) {
c <- Cl[i, ]
denom <- sum(shapes[c] / scales[c] *
(t[i] / scales[c]) " (shapes[c] - 1))

shapes.num <- (t[i] / scales[c]) “shapes[c] / t[i] *
(1 + shapes[c] * log(t[i] / scalesl[cl))
shapes.trm[c] <- shapes.num / denom

scales.num <- (shapes([c] / scales[c]) 2 *
(t[i] / scales[c]) " (shapes[c] - 1)
scales.trm[c] <- scales.num / denom

shapes.scr <- shapes.scr + shapes.rt + shapes.trm
scales.scr <- scales.scr + scales.rt - scales.trm

}

scr <- rep(0, length(theta))

scr[seq(1, length(theta), 2)] <- shapes.scr
scr[seq(2, length(theta), 2)] <- scales.scr
return(scr)

A.3 Quantile Function

For our series system with Weibull component lifetimes, the quantile function is the inverse of the cdf Fr,.
By definition, the quantile p for the strictly monotonically increasing cdf Fr, is the value ¢ that satisfies
Fr,(t;0) —p =0, and so we solve for ¢ using Newton’s method, in which the &*" iteration is given by

() _ ey FPr®;0) —p
fTi (t(k); 0)

We have derived a slightly more efficient method in the qwei_series R function below.

#' Quantile function for a series system with Weibull component lifetimes.
# !
#' @param p quantile
#' @param shapes shape parameters
#' Oparam scales scale parameters
#' Oreturns p-th quantile
qwei_series <- function(p, shapes, scales) {
t0 <- 1
repeat {
tl <- t0 - sum((t0 / scales) “shapes) + log(l - p) /
sum(shapes * t0” (shapes - 1) / scales shapes)
if (abs(tl - t0) < tol) {
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break

}
t0 <- t1
+
return(t1)
}

A.4 Maximum Likelihood Estimation

We use the Newton-Raphson method for Maximum Likelihood Estimation (MLE) in a series system with
Weibull component lifetimes. Numerical optimization is carried out using R’s optim package and the L-
BFGS-B method [? ]. This quasi-Newton method approximates the Hessian using the gradient of the
log-likelihood function (see Appendices ?? and ??7). Bound constraints are applied to maintain positive
shape and scale parameters.

#' L-BFGS-B solver for the series system with Weibull component lifetimes
#' given masked data.
#I
#' @param df masked data frame
#' @param thetaO initial guess
#' Oreturn MLE solution
mle_lbfgsb_wei_series_md_cl_c2_c3 <- function(df, thetal) {
optim(thetal,
fn = function(theta) loglik_wei_series_md_cl_c2_c3(df,
theta[seq(l, length(theta), 2)], thetalseq(2, length(theta), 2)1),
gr = function(theta) score_wei_series_md_c1l_c2_c3(df,
theta[seq(l, length(theta), 2)], thetalseq(2, length(theta), 2)]),
lower = rep(le-9, length(thetal)),
method = "L-BFGS-B",
control = list(fnscale = -1, maxit = 125L))

A.5 Bernoulli Masking Model

In the Bernoulli masking model, the failed component is guaranteed to be in the candidate set and each
non-failed component is included with some fixed probability p.

#' Bernoulli masking model %s a particular type of *uninformed* model.
#' Note that we do mot generate candidate sets with this function. See
#' “md_cand_sampler” for that.
#I
#' ©Oparam df masked data frame.
#' @param p Bernoulli masking probability
#' Oreturns masked data frame with Bernoullti candidate set probabilities
md_bernoulli_cand_cl_c2_c3 <- function(df, p) {

n <- nrow(df)

p <- rep(p, length.out = n)

Tm <- md_decode_matrix(df, "t")

m <- ncol(Tm)

Q <- matrix(p, nrow = n, ncol = m)

Qlcbind(1l:n, apply(Tm, 1, which.min))] <- 1

QL!df[["delta"]]l, ] <- 0O

df %>% bind_cols(md_encode_matrix(Q, prob))
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B Simulation

This appendix showcases select Python and R code instrumental in generating this paper. The entire source
code can be found on GitHub: github.com/queelius/reliability-estimation-in-series-systems [?
]. For clarity and brevity, certain functionalities and safeguards from the original code have been omitted.
However, the full, unedited code, as well as the methods to reproduce this paper, are available in the GitHub

repository.

B.1 Scenario Simulation

Below, you’ll find the R code for the Monte-Carlo simulation, tailored to run the scenarios discussed in

Section 77.

# A function to simulate the effects of various parameters on the sampling

# distribution of the MLE
simulate_scenario <- function(

csv_file, # Destination file to save simulation results
N, # Vector of sample stizes

1y # Vector of masking probabilities

Q, # Vector of quantiles of the serties system

R, # Number of simulation replicates

B, # Number of bootstrap samples

theta # True parameters for the Weibull distribution

) {

shapes <- thetal[seq(l, length(theta), 2)]
scales <- thetalseq(2, length(theta), 2)]

m <- length(scales)

cname <- C(”n”, ||p||, ||q||, "tau”,

ngn
>

pasteO("shape.", 1:m), pasteO("scale.", 1:m),

paste0("shape.mle.",

pasteO("shape.lower."
pasteO("scale.lower."

1:m), pasteO("scale.mle.", 1:m),
, 1:m), pasteO("shape.upper.", 1:m),
, 1:m), pasteO("scale.upper.", 1:m),

"convergence", "loglik")

for (n in N) {
for (p in P) {
for (q in Q) {

tau <- qwei_series(p = q, scales = scales, shapes = shapes)

for (iter in 1:R) {

df <- generate_guo_weibull_table_2_data(shapes, scales, n, p, tau)
sol <- mle_lbfgsb_wei_series_md_cl_c2_c3(theta0 = theta, df =

mle_solver <- function(df, i) {

mle_lbfgsb_wei_series_md_cl_c2_c3(thetald = sol$par, df = df[i, 1)

3

sol.boot <- boot::boot(df, mle_solver, R = B)
ci <- confint(mle_boot(sol.boot))

result <- c(n, p, q, tau, B, shapes, scales,
sol$par[seq(l, length(theta), 2)],
sol$par[seq(2, length(theta), 2)],
cil[seq(1l, length(theta), 2), 1:2],
cilseq(2, length(theta), 2), 1:2],
sol$convergence, sol$value)
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result_df <- setNames(data.frame(t(result)), cname)
write.table(result_df, file = csv_file, sep = ",", append = TRUE)

For example, to run the simulation study for the effect of masking probability, we would run the following
code:

source("sim-scenario.R")

library(wei.series.md.cl.c2.c3)

simulate_scenario(
theta = alex_weibull_series$theta, # the well-designed system
N = c(90L), # sample size

P = c¢(0.1, 0.215, 0.4, 0.55, 0.7), # wary masking probability
Q = c(0.825), # right-censoring quantile
R = 400L, B = 1000L,

max_iter = 12bL, max_boot_iter = 125L,
n_cores = 2L, csv_file = "masking-prob-sim.csv",
ci_method = "bca", ci_level = .95)

Please see the GitHub repository for the full code, since the code as presented will not run without
supporting functions.

B.2 Plot Generation Code

The following Python code generates the plots for the simulation study, plot_cp for the coverage probabilities
and plot_mle for the the sampling distribution of the MLE, both with respect to some simulation parameter,
like sample size (n) or masking probability (p).

def plot_cp(data, x_col, x_col_label):

rel_cols = [x_col] + [f'shape.{i}' for i in range(1l, 6)] + \
[f'scale.{i}' for i in range(l, 6)] + \
[f'shape.lower.{i}' for i in range(1, 6)] + \
[f'shape.upper.{i}' for i in range(l, 6)] + \
[f'scale.lower.{i}' for i in range(1, 6)] + \
[f'scale.upper.{i}' for i in range(l, 6)]

rel_data = datal[rel_cols].copy()

def compute_coverage(row, j):
shape_in = row[f'shape.lower.{j}'] <= row([f'shape.{j}'] <= row[f'shape.upper.{j}']
scale_in = row[f'scale.lower.{j}'] <= row([f'scale.{j}'] <= row[f'scale.upper.{j}']
return pd.Series([shape_in, scale_in], index=[f'shape.cov.{j}', f'scale.cov.{j}'])

for j in range(l, 6):
rel_data[[f'shape.cov.{j}', f'scale.cov.{j}']] =\
rel_data.apply(lambda row: compute_coverage(row, j), axis=1)

cols.cov = [f'shape.cov.{j}' for j in range(l, 6)] + \

[f'scale.cov.{j}' for j in range(l, 6)]
cps = rel_data.groupby(x_col) [cols.cov].mean() .reset_index()
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# Mean coverage probabilities

mean_shape_cp = cps[[f'shape.cov.{j}' for j in range(l, 6)]].mean(axis=1)
mean_scale_cp = cps[[f'scale.cov.{j}' for j in range(l, 6)]].mean(axis=1)
cps['mean_shape_cp'] = mean_shape_cp

cps['mean_scale_cp'] = mean_scale_cp

plt.figure(figsize=[5, 4])
shape_cmap = plt.get_cmap('Blues')
scale_cmap = plt.get_cmap('Reds')

shape.ls = ['-', '==', '=.', ':', '-']
shape .mk s', , 'x', 'D']

[}
—
o

for j, color, 1ls, mk in zip(range(1, 6), \
shape_cmap(np.linspace(0.4, 1, 5)), shape.ls, shape.mk):
plt.plot(cps[x_coll, cps[f'shape.cov.{j}'], label=f'$k_{j}$', \
color=color, linestyle=ls, marker=mk)

scale.ls = ['=', '—==', '=.', ‘"', '=1]
scale.mk ‘", 'D']

]
—

o

0
>

e

for j, color, ls, mk in zip(range(1, 6), \
scale_cmap(np.linspace(0.4, 1, 5)), scale.ls, scale.mk):
plt.plot(cps[x_coll, cps[f'scale.cov.{j}'], label=f'$\lambda {j}$', \
color=color, linestyle=ls, marker=mk)

plt.plot(cps[x_col], cps['mean_shape cp'], color='darkblue', linewidth=4, \
linestyle='-"', label='$\\bar{k}$")

plt.plot(cps[x_col], cps['mean_scale_cp'], color='darkred', linewidth=4, \
linestyle='-"', label='$\\bar{\lambda}$')

plt.axhline(y=0.95, color='green', linestyle='--', label='$95\\/$")
plt.axhline(y=0.90, color='red', linestyle='--', label='$90\\%$"')
plt.xlabel (f'{x_col_label} (${x_coll}$)")

plt.ylabel('Coverage Probability (CP)')

plt.gca() .yaxis.set_major_formatter(

FuncFormatter(lambda y, _: '{:.2f}'.format(y)))
plt.title('Coverage Probabilities for Parameters')
plt.legend(loc='best', bbox_to_anchor=(1, 1))
plt.tight_layout()
plt.savefig(f 'plot-{x_col}-vs-cp.pdf')

def plot_mle(raw_data, x_col, par, par_label, label, k=100, loc='upper left'):
ps = par.split('.")
par_low = f'{ps[0]}.lower.{ps[1]}'
par_up = f'{ps[0]}.upper.{ps[1]1}’
par_mle = f'{ps[0]}.mle.{ps[1]}'
x_vals = sorted(raw_datal[x_col] .unique())

median_mles = []
true_vals = []
mean_mles = []
low_q = []
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up_q = []
plt.figure(figsize=(4, 4))

for i, x in enumerate(x_vals):
data = raw_data[raw_data[x_col] == x]
low_med, up_med = np.percentile(

data[par_low], 50), np.percentile(datal[par_upl, 50)

mean_mle = data[par_mle].mean()
true_val = datalpar].mean()
median_mle = data[par_mle] .median()
mean_mles.append(mean_mle)
median_mles.append(median_mle)
low_q.append(np.percentile(datal[par_mle], 2.5))
up_q.append(np.percentile(datalpar_mle], 97.5))
true_vals.append(true_val)

plt.vlines(i, low_med, up_med, color='blue',

label='Median 95% CI' if i == 0 else "")
plt.plot(i, mean_mle, 'ro', label='Mean MLE' if i == 0 else "")
plt.plot(i, median_mle, 'bo', label='Median MLE' if i == 0 else "")

plt.plot(np.arange(len(x_vals)), mean_mles, 'r—-')
plt.plot(np.arange(len(x_vals)), median_mles, 'b--')
plt.plot(np.arange(len(x_vals)), true_vals,

'g-', label='True Value', linewidth=2)

plt.fill_between(np.arange(len(x_vals)), low_q, up_q,
color='blue', alpha=0.15, label='95Y, Quantile Range')

plt.xticks(np.arange(len(x_vals)), x_vals)
plt.xlabel(f'{label} (${x_coll}$)"')
plt.ylabel(f'Statistics for {par_labell}')
plt.title(f'MLE for {par_label}')
plt.legend(loc=loc)

leg = plt.gca().get_legend()
for text in leg.get_texts():
plt.setp(text, fontsize='small')

plt.tight_layout(h_pad=4.0, w_pad=2.5)
plt.savefig(f'plot-{x_col}-vs-{par}-mle.pdf"')

For example, to generate a plot of the coverage probabilities with respect to sample size (n) for the CSV
file data.csv, we would run the following code:

from plot_utils import plot_cp

import pandas as pd
plot_cp(pd.read_csv("data.csv"), 'n', 'Sample Size')

Please see the GitHub repository for the full code, since the code as presented will not run without
supporting functions.
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