
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Preventing Ransomware Damages using In-Operation Off-Site

Backup to Achieve a 10-8 False-Negative Miss-Detection Rate

 Hiroshi Fujinoki Alexander Towell Vamshi Anirudh Thota

Department of Computer Science Department of Computer Science Department of Computer Science

Southern Illinois University Edwardsville Southern Illinois University Edwardsville Southern Illinois University Edwardsville

Edwardsville, IL, USA 62026-1656 Edwardsville, IL, USA 62026-1656 Edwardsville, IL, USA 62026-1656

hfujino@siue.edu atowell@siue.edu vthota@siue.edu

Abstract—This paper proposes a backup-based defense

mechanism that transparently and continuously secures

production data against ransomware while ensuring controlled

growth of backup copies. Ransomware attacks continue to

intensify, often bypassing conventional static or dynamic

detection-based security measures and inflicting irreparable harm

on critical organizational data. Our approach focuses on a “just-

in-time” backup strategy—termed In-Operation Off-Site

Backups—that interposes continuous and verifiable file

duplication at each update, combined with a detection mechanism

that can halt malicious encryption attempts as soon as they are

discovered. The solution leverages Bloom filters and carefully

managed linked-list backups to maintain a low false-negative miss

detection rate on the order of 10-8, providing extremely high

confidence that unauthorized data modifications will be detected

before damage spreads. By employing fake fields, locality-aware

thresholds, and fine-tuned probabilistic data structures, the

system discriminates malicious activities from legitimate ones,

preventing denial-of-service threats associated with frequent

backups. Simulation results demonstrate that this approach can

achieve highly reliable detection and sustainable storage

utilization. The proposed method fills a crucial gap in ransomware

protection by ensuring that backups remain both secure and

manageable, thereby mitigating the risk of catastrophic data loss.

Keywords—ransomware, offsite data backups, malware

detection, Bloom filter, security risk management

I. INTRODUCTION

Despite significant effort by security administrators,
ransomware attacks show no clear signs of slowing down, and
attackers’ demands are increasing for recent targets. Based on
recent trends, we focus on computer systems owned by
organizations rather than personal users. Although three types of
ransomware—lockers, exposures, and encrypters—have been
reported [1], this work focuses on encrypters, as they are the
most common form today. Specifically, we focus on protecting
production data (i.e., document files) from malicious encryption
as well as other forms of malicious modifications, such as data
obfuscation and data shuffling [2, 3, 4].

The primary reasons for the difficulties in preventing
ransomware are twofold. First, the vast attack surface—
including viruses, URL forgeries in web-based applications,
system vulnerabilities, and threats from insiders (both
intentional and unintentional)—makes it challenging to secure
all potential entry points [5]. Second, it is difficult to prevent
damages using existing proactive solutions [6], such as virus
scanners, anomaly detection systems, and firewalls. Although
these proactive solutions have positive effects, the challenge is
that preventing damage from ransomware allows no time margin

between when the ransomware becomes active and when it is
detected. Although many existing methods for ransomware
detections have been proposed [7-16], none of them satisfies all
of the following requirements:  a solution without depending
on metrics that are under controls of ransom attackers (such as
malware signatures, anomy detections, and entropy values after
encryption),  effectiveness to obfuscation ransomwares, 
protections against zero-day ransomwares, and  a control over
false negatives.

A straightforward approach would be to back up production
data each time any update is made. Although this approach
logically offers a safe solution, those backup-based solutions
require detection of ransomware activities (otherwise they can
be a cause of denial-of-service attacks [17]). We propose a
backup-based protection using a detection metric out of
attackers’ control (i.e., reference counts by distinct users). We
propose a method that avoids uncontrolled growth of backup
copies by (i) unambiguously detecting malicious updates using
fake fields and (ii) evaluating the trustworthiness of the record’s
contents using reference counts without depending on existing
detection methods. While our work should be extended to files
with any internal structure, this paper assumes only those files
that have a block structure, where each block is implemented as
a record consisting of fields (typical database files).

II. EXISTING WORK

Many of the existing backup-based solutions consist of two
functional components:  detections of ransomware activities
and  recovering the last known good production data from
backup copies after a detection of ransomware activities. Park
proposed a solution using entropy value in production data for
detection of ransomware activities [18]. However, as Chen
argued, the entropy of production data will remain low if the
production data is obfuscated [4]. Gomez-Hernandez proposed
detections using honeypots [19]. Detections using honeypots
have two weaknesses: delay before detections and high false

negatives ( 10-2). Mir [20] and Chen [4] applied machine-
learning to ransomware detections, which share the same
weaknesses for [19]. It is hard to achieve low false negatives (<
10-6) especially to zero-day ransomwares. Continella proposed
a detection method using anomaly detection by detecting
deviations from the expected legitimate file I/O patterns [21].
The major risk is that ransom attackers will counter-detect the
expected legitimate file I/O patterns to evade detections. The
backup-based solutions without ransomware activities [22, 23]
will not be a reliable solution, which may result in a huge
volume of backups, as well as their incapability of identifying
the last known good copy of production data. TABLE 1
summarizes the limitations of the existing solutions.

TABLE 1. LIMITATIONS OF EXISTING BACKUP-BASED
SOLUTIONS

III. PROPOSED SOLUTIONS

A new solution is designed for coping with the four
limitations in the existing solutions:  without depending on
metrics that are under controls of ransom attackers, 
effectiveness to obfuscation ransomwares,  protections
against zero-day ransomwares, and  a control over false
negatives. The proposed solution consists of both hardware and
software components. Its hardware components include
production host computers (denoted production hosts) and one
or more backup servers. Production hosts are where users create
production data, which is stored on the backup servers as files.
Users issue commands to backup servers to read, update, add, or
delete their data.

The software components consist of a set of secure system
calls installed at each production host and a set of the processes
executed at backup servers. These processes manage files and
their backup copies as a linked list for each record in each
backed-up file. We denote the set of processes at a backup server
as Server-Side Implementation (SSI). SSI consists of processes
at backup servers that monitor commands from users to detect
malicious modifications by ransomware, halt their file accesses
to prevent damage, and dynamically prune unnecessary backup
copies. Fig. 1 depicts the overall structure of the proposed
backup-based solution.

Fig 1. Overview of the system architecture of the backup-based solution.

A. Hardware Component

The two primary hardware components are:

• Production Hosts: Computers where users interact with
applications that generate data and use (read, update, add,
and delete) the data as files. A set of new system calls is
installed on each production host as part of the operating
system by a qualified security administrator, ensuring
users cannot install a bogus set of system calls or tamper
with them once installed.

• Backup Server: A remote file server that maintains the
files created by users and their backup copies. It creates
backup copies of production files and investigates file I/O

commands from users to (1) detect malicious
modifications by ransomware and prevent further
damage, and (2) purge unnecessary backup copies to
prevent uncontrolled growth of backups.

B. Software Components

• Secure System Calls: Each time a user at a production host
accesses a record in a file stored at a backup server, the
secure system calls transmit file I/O commands to a
backup server.

• Server-Side Implementation (SSI): Upon receiving a file
I/O command from a user, the SSI at a backup server
investigates the command, consisting of three possible
outcomes:

(a) If SSI confirms the legitimacy of the contents of the
record using reference counts, it purges all backup
copies of the record.

(b) If SSI confirms that the command is ransomware
activity by using fake record fields, it freezes the entire
file system to prevent further damage to any files stored
on the backup server.

(c) If SSI can neither confirm if the command is
ransomware activity nor if the contents of the record is
legitimate, it attaches the modified record to the end of
the linked list of its backup copies.

C. Proposed Procedure

SSI employs two methods for detecting ransomware
activity:

1. Fake Record Fields: Dummy fields inserted into each
record by SSI to help identify ransomware activity.
Legitimate users are not expected to interact with fake
fields, while ransomware may attempt to read, modify, or
encrypt them without their knowledge about the fake fields.

2. Reference Counts: SSI tracks four reference counts for
evaluating the trustworthiness of the record’s contents or if
backed-up copies of a deleted record can be permanently
purged.

• CRECORD-READ(i, j): The distinct user count of users who
read record i in file j. Initialized as 0 when a new file is
created or a new record is inserted into a file.

• CFILE-READ(j): The distinct user count of users who read
any record in file j. Initialized at 0 when a new file is
created.

• CFILE-UPDATE(j): The distinct user count of users who
update any record in file j. Initialized at 0.

• CDELETED-RECORD (i, j): The distinct user count of users who
would have read or updated record i in file j after the
record is deleted. Initialized at 0 when a record or a file
is deleted.

In addition to the four reference counts, SSI attaches
UUPDATE(i, j) to record i in file j. It is initialized as an invalid user
ID, such as “-1”, when a new record i is added to file j or file j
is created.

Proposed by Primary Detection Issue(s)

Chen et. al. [4] sandbox delay before detections, high false postives

Park et. al. [18] entropy not effective to obfuscation ransomwares

Gomez-Hernandez [19] honeypots delay before detections, high false postives

Mir [20], Chen [4] machine learning not effective to zero-day ransomwares, high false negatives

Continella et. al. [21] anomaly detection not effective to zero-day ransomwares, high false negatives

Jin [23], Vrable [24] no detection a large volume of backup-copies, hard to retrieve last good data

Production Host

Production copy

of a file

Remote Backup Server

Secure System Calls

Users





Server-Side

Implementation

Backup Server

Linked-list backup
copies for each record

• UUPDATE(i, j): The ID of the user (an unsigned integer) who
made the last update to record i in file j.

Detection by Fake Fields

Backup servers insert fake fields into each record when a
new file is created. Each fake field is a dummy field whose
content is automatically generated by the backup servers, which
should be deceptive enough to prevent attackers from
distinguishing them from production fields. Only the backup
servers can distinguish fake fields from production fields. See
Fig. 2 for visualizations of fake fields.

Fig 2. Visualizations of fake fields. Left (a) is the record structure and right (b)
is the file structure.

As a proactive measure, SSI employs fake fields to flag
suspicious activity. We consider two types of commands: read
and update. We define an update command to be one that
replaces the content in one or more fields in a record. When SSI
receives a read or a update command, it executes the following
procedure for identifying suspicious activities using fake fields
in each record. If a read or update operating results in either case
(a) or (c), the ransomware detections by reference counts start.

Fig 3. READ/UPDATE command procedure.

Detection by Reference Counts

When SSI cannot determine the legitimacy of an update
record or detect ransomware activities using fake fields, it
proceeds to the second phase. To differentiate ransomware
activity from legitimate user actions, we introduce reference
counts along with threshold values that characterize normal
behavior. When a new file is created, SSI creates a backup copy
of each record and attaches the first three reference counts (i.e.,
CRECORD-READ(i, j), CFILE-READ(j), and CFILE-UPDATE(j)) to a record or
a file after they are initialized. When a record or a file is deleted,
CDELETED-RECORD (i, j) is attached to each deleted record.

SSI uses the following Bloom filters to identify distinct
users.

• BFRECORD-READ(i, j): A Bloom filter that approximates the
set of user IDs who read record i in file j. Initialized at

 when a new file is created or a new record is inserted
into a file.

• BFFILE-READ(j): A Bloom filter that approximates the set
of user IDs who read at least one record in file j.

Initialized at  when a new file is created.

• BFFILE-UPDATE(j): A Bloom filter that approximates the set
of user IDs who updated at least one record in file j.

Initialized at .

• BFDELETED-RECORD (i, j): A Bloom filter that approximates
the set of user IDs who would have read or updated
record i in file j after the record is deleted. Initialized at

 when a record is inserted into a file or a file is deleted.

To detect ransomware activity that deviates from expected
data access patterns, SSI uses the following parameters:

k: The minimum number of distinct users who read the
contents of a record to ensure it has not been maliciously
updated, obfuscated, or shuffled by ransomware.

w: The number of timeslots (TSLOT) considered in the sliding
window for recording the IDs of users who have updated at
least one record in a file.

q: The ratio the number of the files in which at least one record
is updated by a user to the total number of the existing files,
calculated over the most recent 𝑤 timeslots ([TSLOT]w).

y: The threshold determining when a deleted record can be
permanently purged. SSI retains deleted records even after
they are “deleted” from a production file, storing them in a
linked list of deleted records. A deleted record is purged
when a certain number (y) of legitimate users implicitly
agree to its removal.

TSLOT: A fixed time interval during which the IDs of users who
have updated at least one record in a file are recorded. To
detect deviations from temporal locality, we use a sliding
window approach with a window size of w. The w most
recent timeslots is denoted by [TSLOT]w. Since w is a fixed
parameter, we do not need to retain the entire history of
timeslots, and so may truncate it to the most recent w
timeslots for efficiency.

NFILES(s): An integer counting the number of files updated by
user 𝑠 during the most recent 𝑤 timeslots [TSLOT]w.

UMAX_FILES: An integer representing the largest number of files
updated by a user during the most recent 𝑤 timeslots
([TSLOT]w).

Procedures Executed by SSI

The following procedures are executed by SSI for detecting
ransomware activity. When a new record i is added to file j by
user ID s, SSI executes the procedure shown in Fig. 4. When SSI
receives a read command from user s to record i in a file j, SSI
executes the procedure shown in Fig. 5. When SSI receives a

bogus

field

record 0

record 1

record N

record (N-1)

production

field

production

field

production

field

bogus

field

production

field

(a) visualization of bogus fields in table structure

a record

a record-structured file





a fake field

a fake field

(b) visualization of bogus fields in file structure

(a) If the read or the update command is applied only to

non-fake fields, SSI proceeds to detection using the

reference counts. For example, SELECT * FROM

table WHERE field = <non-fake-field>.

(b) If the read or the update command is applied only to

fake fields, SSI raises an attack alert and halts the

system. For example, SELECT * FROM table

WHERE field = <fake-field>.

(c) If the read or the update command is applied to both

fake and non-fake fields (e.g., using SELECT * FROM

table), SSI proceeds to detection using the reference

counts.

command for updating record i in file j by user s, SSI performs
the procedure shown in Fig. 6.

Fig 4. ADD command procedure.

Fig 5. READ command procedure.

Fig 6. UPDATE command procedure.

Fig 7. On-command procedure for DELETE command

Fig 8. Post-command procedure for DELETE

In Fig. 6, the last four steps in the Update Command (steps
3-6, Fig. 6)) are for detecting malicious modifications by
ransomware based on the expected locality in data references.
Essentially, if a user modifies a large number of records in a
large number of files (deviations from the spatial locality) in a
short amount of time (deviations from temporal localities), a set
of such modifications should be flagged as suspicious. As the
Update Command shows, parameter q determines the sensitivity
in the spatial locality and parameter w determines the sensitivity
in the temporal locality.

The procedure for deleting an existing record in a file
consists of the on-command procedure, which SSI performs
when it receives a command to delete existing record i in file j
and the post-command procedure, which SSI performs after
SSI deletes an existing record from the production copy of a
file.

SSI executes the following procedure before SSI deletes
record i in file j by user s. The on-command procedure is as

1. SSI inserts s to BFRECORD-READ(i, j) and BFFILE-READ(j).

2. SSI sets both CRECORD-READ(i, j) and CFILE-READ(j) to 0.

Then, SSI proceeds to 3.

3. SSI adds record i to file j. SSI terminates the procedure.

1. If (s = UUPDATE(i,j)), SSI terminates the procedure.

Otherwise, proceed to 2.

2. If (s  BFRECORD_READ(i,j)), SSI increments

CRECORD_READ(i,j) by one (+1) and inserts s to

BFRECORD_READ(i,j). SSI proceeds to 3.

3. If (s  BFFILE_READ(j))), SSI increments CFILE_READ(j) by

one and inserts s to BFFILE_READ(j). SSI proceeds to 4.

4. If (CRECORD_READ(i,j) < k), SSI terminates this procedure.

Otherwise, proceed to 5.

5. SSI performs the following tasks:

i. Delete all backup copies of record i in file j.

ii. Reset BFRECORD-READ(i, j) =  and CRECORD-READ(i, j)

= 0.

iii. Terminate the procedure.

1. SSI sets s = UUPDATE(i, j), resets BFRECORD-READ(i, j) to ,

and resets CRECORD-READ(i, j) = 0. Then, SSI proceeds to

2.

2. SSI appends record i at the end of the linked list of the

deleted records. Then, it proceeds to 3.

3. SSI deletes record i from file j. SSI terminates the

procedure.

1. When another user u applies either read or update

command to record i in file j, SSI scans the linked list

of the deleted records to identify the records (i.e., record

ID i and the file ID j) that match with the record

specifiers (e.g. WHERE field for queries). If a matching

record is not found in the linked list of the deleted

records, SSI terminates post-command procedure.

Otherwise, SSI proceeds to 2.

2. For record (i, j) found in the linked list of the deleted

records, SSI checks if its UUPDATE(i, j) = u. If it is, SSI

terminates the post-command procedure. Otherwise

SSI proceeds to 3.

3. SSI checks if u is in BFRECORD-READ(i, j). If it is, SSI

terminates the post-command procedure. Otherwise, it

increments CRECORD-READ(i, j) by one. SSI proceeds to 4.

4. SSI checks if the number of the distinct users who

would have referenced a deleted record (CRECORD-READ(i,

j)) exceeds a threshold, y, by checking the condition

if (CRECORD-READ(i, j)  y)

If the count does not exceed the threshold value (y), SSI

terminates the procedure. Otherwise, SSI proceeds to 5.

5. SSI permanently purges the deleted record (record (i, j))

from the linked list of the deleted records. Then, SSI

terminates the post-command procedure.

1. If s = UUPDATE(i, j), then the process terminates.

Otherwise, proceed to 2.

2. SSI performs the following tasks in order:

i. Append the current record (one before that update

is applied) at the end of the backup linked list of

record i in file j, and then apply the update(s) to the

current record.

ii. Set s = UUPDATE(i, j) to the current record.

iii. Insert 𝑠 to BFFILE-UPDATE(j). Then, proceed to 3.

3. Calculate the number of the files updated by user s,

during the w most recent timeslots by scanning BFFILE-

UPDATE(k) for each file in the system. Save the total

number of the files updated by user s to NFILE(s). Proceed

to 4.

4. Identify the IDs of the users who updated the largest

number of files during the most recent timeslots as

follows. Then proceed to 5.

𝑈𝑀𝐴𝑋−𝐹𝐼𝐿𝐸𝑆 = 𝑚𝑎𝑥(𝑁𝐹𝐼𝐿𝐸(𝑠)).

5. If 𝑈𝑀𝐴𝑋−𝐹𝐼𝐿𝐸𝑆 <
𝑛

𝑞
, where 𝑛 is the total number of the

existing files in the system, then SSI terminates the

procedure. Otherwise, proceed to 6.

6. SSI freezes the whole system by declaring an ongoing

ransomware. Then, SSI terminates the procedure.

shown in Fig. 7. Fig. 8 shows the procedure SSI executes after
record i is deleted from file j.

IV. PERFORMANCE EVALUATIONS

We evaluate the performance of the proposed offsite backup
mechanism. We provide two analyses to assess its
effectiveness.

Analysis 1: False negative miss-setection rate and the

required reference counts by distinct users ()

In this analysis, we evaluate the effectiveness of the offsite
backup by assessing the false negative miss detection rate, Pmiss
which quantifies the probability that all users fail to detect a
malicious update in any file.

Fig. 9 the R-map matrix for risk management.

We adopt the R-map matrix as the benchmark for safety
levels in preventing ransomware damage [26] (Fig. 9). For
example, a false negative miss detection rate Pmiss = 10-6 means
the system fails to detect one out of 106 ransomware attempts.

We compute  for different values of p and various target
false negative miss detection rate (Pmiss) with w fixed at 10 and
N (N: the number of files in a system) fixed at 10 (Fig. 10). We

see that as p increases, the required  decreases for a given Pmiss.
At p = 0.01, achieving Pmiss = 10-8 requires 19 distinct users in
each timeslot, while achieving Pmiss = 10-4 requires 16 distinct

users. As p increases, the required  decreases.

Fig. 10 Expected number of distinct users  for achieving different target false
negative detection rates Pmiss or different user malicious update
recognition probabilities p.

Fig. 11 shows the expected number of user references () to
achieve a particular miss rate (Pmiss) when we reduce N to 1. We
see that the number of files significantly impacts the expected

, especially when p is small (e.g., p = 0.001). This observation

suggests that the proposed backup mechanism is more effective
in systems with a larger number of files.

With p = 0.001 and  = 10, Fig. 12 shows how Pmiss decreases
as w increases. For N = 1000, Pmiss drops below 10-8 at w = 5,
while for smaller N, achieving the same Pmiss requires larger w.
These results suggest that the proposed backup mechanism is
well-suited for organizational systems with a reasonable number
of files and frequent read accesses.

Fig. 11 Expected number of distinct users  when N = 1 and all other
parameters identical to Fig. 10. As the number of files increases, the

expected  also increases.

Fig. 12 False negative miss detection rate Pmiss for p = 0.001 and  =10.

We developed a formula to deduce the expected  (the

reference counts by  distinct users) for target w, N, and Pmiss.
The following is the process of our deduction.

Theorem 1: Consider a system with N files subject to potential

malicious updates by ransomwares, monitored by  distinct
users over w timeslots. Let p, 0 < p < 1, be the probability that a
single user detects a malicious update in a file once it has
occurred.

We refer to Pmiss as the false negative detection rate, a key
metric for assessing the effectiveness of the offsite backup in
preventing ransomware damage.

Proof: By assumption, a user detects a malicious update with
probability 𝑝, so the probability that this user does not detect it

is 1 - p. Assuming independence across all  users, w timeslots,
and N files, the probability that no user detects the malicious
update in any file over all timeslots is the product of the
individual non-detection probabilities. Thus,

𝑃miss = (1 − 𝑝)𝜆×𝑤×𝑁 (1)

Degree of Harm

F
re

q
u

en
cy

 o
f

O
cc

u
rr

en
ce

Class-2

Class-1

Class-0

Class-3

Class-4

Category-0

Frequent

Probable

Occasional

Remote

Improbable

Incredible R  10-8

10-3  R < 10-4

10-4  R < 10-5

10-5  R < 10-6

10-6  R < 10-7

10-3 < RClass-5

Category-I Category-II Category-III Category-IV

None Negligible Marginal Critical Catastrophic

C6

C5

C4

C3

C2

C1

B3

B2

B1

A1

B3

B2

B1

A1

B3

B2

B1

A2

A1

B3

B2

A2

A3

C4

C3

C2

C4

C3 C4 C5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.000 0.005 0.010 0.015 0.020


:

n
u

m
b

er
 o

f
re

ad
 a

cc
es

se
s

b
y
 l

eg
it

im
at

e
u

se
rs

in
 T

S
L

O
T

ti
m

e

false-negative rate of 10-8 (N = 1)

false-negative rate of 10-7 (N = 1)

false-negative rate of 10-6 (N = 1)

false-negative rate of 10-8 (N = 10)

false-negative rate of 10-7 (N = 10)

false-negative rate of 10-6 (N = 10)

p: the user malicious update recognition probability (p = 0.02 means 2%)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.000 0.005 0.010 0.015 0.020


:

n
u

m
b

er
 o

f
re

ad
 a

cc
es

se
s

b
y
 l

eg
it

im
at

e
u

se
rs

in
 T

S
L

O
T

ti
m

e

false-negative rate of 10-8 (N = 1)

false-negative rate of 10-7 (N = 1)

false-negative rate of 10-6 (N = 1)

false-negative rate of 10-8 (N = 10)

false-negative rate of 10-7 (N = 10)

false-negative rate of 10-6 (N = 10)

p: the user malicious update recognition probability (p = 0.02 means 2%)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 20 40 60 80 100 120 140 160

false-negative rate (p = 0.001,  = 10)
fa

ls
e-

n
eg

at
iv

e
ra

te
 (

1
.0

0
 =

 1
0
0
.0

%
)

w: the number of TSLOT

N = 1

N = 5

N = 10

N = 50

N = 100

N = 500

N = 1000

Next, we derive the expected number of distinct users, 
required to achieve a target false negative detection rate Pmiss.

Corollary 1: Given a target false negative detection rate Pmiss
and known parameters p, w, and N, the expected number of

distinct users  required to achieve this target rate is:

𝜆 =
𝑙𝑜𝑔(𝑃miss)

𝑙𝑜𝑔(1−𝑝)×𝑤×𝑁
 (2)

Proof: Starting from Theorem 1, taking the logarithm of both
sides yields:

𝑙𝑛(𝑃miss) = 𝑙𝑜𝑔((1 − 𝑝)𝜆𝑤𝑁) = 𝜆𝑤𝑁𝑙𝑜𝑔(1 − 𝑝) (3)

Solving for , we obtain:

𝜆 =
𝑙𝑜𝑔(𝑃miss)

𝑤𝑁𝑙𝑜𝑔(1−𝑝)
 (4)

Analysis 2: Bloom Filter Configuration and Performance and
its impact to the required reference counts by distinct users

A Bloom filter is a probabilistic data structure often used for
membership queries, trading space efficiency for a controlled
false-positive rate, denoted 𝜀. For this study, Bloom filters are
critical in managing backup data operations, ensuring minimal
redundancy while safeguarding against malicious
modifications. The key parameters for Bloom filters are:

• Size (m): The number of bits in the Bloom filter.

• Hash Function Count (k): The number of hash functions
used to map elements to the Bloom filter.

Impact of Bloom Filter Size (m) and Hash Function count (k)

We limit this analysis to a fixed number of distinct users N
= 100 and we estimate the sensitivity to the false positive rate
(FPR) with respect to the Bloom filter size m and number of
hash functions k. TABLE 2 shows the expected FPR for filter
size (m = 256 to 8192 bits) with k = 1, 2, 3, 4, and 5 (Fig. 13).

For a given number of distinct users ( = 100), the size of
the Bloom filter directly impacts the probability of false
positives. A Bloom filter size of m = 256 bits results in a large
false positive rates:

• 29.4, 32.9, 39.0, and 46.5% for hash function counts k = 2,
3, 4, and 5, respectively.

Doubling the Bloom filter size to m = 512 bits reduces the

false positive rate to around 10% (  0.1), while Bloom filter
sizes of m = 1024 bits or larger reduce this probability to under
3.2%.

In addition, it is important to know the number of distinct

users interacting with the system, denoted  as before. The

probability that the Bloom filter reports a false positive  for a
non-interacting user, is given by:

𝜀 ≈ (1 − 𝑒−𝑘𝜆 𝑚⁄)
𝑘
 (5)

The optimal k for a given m and  is given by:

𝑘∗ =
𝑚

𝜆
𝑙𝑛2 (6)

In practice,  varies over time or is not known apriori,
necessitating a range of k (and m) values to accommodate
different scenarios. A larger value of k also increases the
computational cost of hashing, potentially impacting system
performance. Balancing 𝜀 and computational overhead is thus
critical.

TABLE 2. EXPECTED FPR FOR FILTER SIZE AND
NUMBER OF HASH FUNCTIONS

Fig. 13 False positive rate as a function of Bloom filter size m and hash

function count k.

Theorem 1: If we report the number of distinct users that test

positive in the Bloom filter as app, the expected number of users
that test positive in the Bloom filter is given by:

E(app) =  +  × n (7)

a standard deviation:

𝜎(𝑎𝑝𝑝) = √𝜀(1 − 𝜀) × 𝑛 (8)

a bias is given:

𝑏𝑖𝑎𝑠(𝜆𝑎𝑝𝑝) = 𝜀 × 𝑛 (9)

a 95% confidence interval (using the CLT) given by

𝜆 + 𝑛𝜀 ± 1.96√𝑛𝜀(1 − 𝜀) (10)

where 𝑛 are the number of users not inserted into the Bloom

filter,  is the false positive rate of the Bloom filter, and  is the
number of users inserted into the Bloom filter.

Proof: We have  positives and 𝑛 negatives. The Bloom filter

has a true positive rate of 1, so all  positives will test positive.

However, the false positive rate  will cause some of the n
negatives to test positive.

To compute the expectation and the variance, we model each
of the n negatives as a Bernoulli random variable with

probability  of testing positive. The sum of these n Bernoulli

random variables has an expectation of n and a variance of (1-

m (bits) k =2 k =3 k =4 k =5

256 29.39% 32.88% 39.03% 46.54%

512 10.46% 8.72% 8.64% 9.42%

1,024 3.15% 1.64% 1.09% 0.86%

2,048 0.87% 0.25% 0.10% 0.05%

4,096 0.23% 0.04% 0.01% 0.00%

8,192 0.06% 0.00% 0.00% 0.00%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5 6

fa
ls

e
p
o
si

ti
v
e

ra
te

 (
)

 f
o
r

N
=

 1
0
0

256 512 1024 2048 4096 8192

size of a bloom filter in bits (m)

- k = 2

- k = 3

- k = 4

- k = 5

number of hash functions (k)

)n. Thus, the expectation of the number of users that test
positive in the Bloom filter is given by the number of positives

 plus the expectation of the number negatives n that test

positive, which in sum is  + n.

The standard deviation is just the square root of the variance,
the bias is just the expectation of the number of false positives,
and the confidence interval is a direct application of the Central
Limit Theorem (CLT).

The accuracy and precision of the 𝜆 is important, as many of
our parameters depend on the number of distinct users 𝜆. We see

that app is a positively biased estimate of 𝜆 due to the false
positives. As 𝜀 increases, the bias in the estimate also increases.
We may adjust the estimate of 𝜆 by subtracting the bias to obtain
a less biased estimate of 𝜆. This is given by:

𝜆 = 𝜆𝑎𝑝𝑝 − 𝜀𝑛 (11)

which is an unbiased estimator.

Reasonable Configurations

A 64-byte (m = 512 bits) Bloom filter represents a
reasonable compromise between space and performance,
achieving a false-positive rate of approximately 10%.

Estimating the Number of Distinct Users

Since the integrity of the system depends on accurate

estimates of the number of distinct users  inserted into the

Bloom filter, we compute the biased estimate app and the

unbiased estimate 𝜆 . For this configuration, the apparent
number of users is overestimated by 10%:

 𝜆𝑎𝑝𝑝 ≈ 90 + 0.1 × 100 = 110 (12)

We apply the bias-correction to obtain the unbiased estimate:

𝜆 = 110 − 0.1 × 100 = 100 (13)

Fig. 14. the predictable impact of the false positives (how much sooner

SSI will incorrectly halt a system due to the expected false positives in

Bloom filter

Fig.14. visualizes (app)/ ratio for various FPRs () when 

= 100,000. For n/ ratio = 0.01 (n = 1 and  = 100), the (app)/
ratio is estimated to be 0.01% (SSI will halt a system 0.01%

sooner than it should in terms of reference counts) for  = 0.01,

0.02% for  = 0.02, 0.03% for  = 0.03, 0.04% for  = 0.04, and

0.05% for  = 0.05. For n/ ratio = 0.5 (n = 50 and  = 100), the

(app)/ ratio is estimated to be 0.5% (SSI halts a system 0.5%

sooner in terms of reference counts) for  = 0.01, 1.0% for  =

0.02, 1.5% for  = 0.03, 2.0% for  = 0.04, and 2.5% for  = 0.05.

These results (as shown by equation (7)) conclude that the
impact of the false positives (i.e., the number of distinct users
who did not do a read operation for a time slot, but tested

positive) can be estimated using a liner regression model ( × n).

For example, if ((app)/) ratio = 1.01 (i.e., 101.0%) because of
the 1% FPR, the SSI will halt a system 1% sooner in terms of
user reference count.

Justification for 64-byte Bloom filters

Given the space constraints and operational needs of backup
servers, the results demonstrate that:

1. Increasing the Bloom filter size beyond 1024 bits yields
diminishing returns, with false-positive probabilities
already reduced to under 3.2.

2. A 512-bit Bloom filter offers a balance of accuracy and
resource efficiency, with a manageable false-positive rate of
around 10%.

Our simulations confirm that this configuration is well-
suited for environments where a tradeoff between space
overhead and accuracy is acceptable. For instance, maintaining
a 10% false-positive rate does not significantly compromise the
system’s ability to protect production payloads, such as file
records.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel backup-based solution,
referred to as In-Operation Off-Site Backups, designed to
protect critical organizational data against the escalating threats
posed by ransomware. Unlike conventional detection-based
strategies that rely solely on known signatures or behavior
profiles, our method blends continuous, fine-grained versioning
of production data with a probabilistic and locality-aware
detection mechanism. By leveraging Bloom filters, fake record
fields, and dynamically managed linked-list backups, the
proposed system achieves a highly reliable false-negative
detection rate - on the order of 10-8 - while simultaneously
limiting backup explosion and preserving system performance.

A key innovation of the approach is its capacity to
distinguish genuinely benign user updates from malicious
activities attempting to encrypt or obfuscate large amounts of
data. The combination of on-command backup creation,
reference count monitoring, and strategically placed fake fields
ensures that ransomware operations cannot silently propagate.
Once anomalous behavior is detected, the system halts further
modifications, effectively containing damage at the earliest
possible stage. Our results indicate that In-Operation Off-Site
Backups can be tuned to maintain extremely low false-negative
probabilities without incurring unsustainable storage or
computational overhead. For our future work, we currently
recognize the following five tasks:

1. Wider Application Scenarios:

While the current design assumes files with a record-based
structure (e.g., typical database files), the approach should
be extended and adapted to files of varying formats and
internal structures. Enhancing the solution to handle diverse

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

(
ap

p
)/


n/ ratio

 = 0.05

 = 0.01

 = 0.02

 = 0.03

 = 0.04

100.0%

100.5%

(0.5% sooner)

101.0%

(1.0% sooner)

101.5%

(1.5% sooner)

102.0%

(2.0% sooner)

102.5%

(2.5% sooner)
 = 100,000

file systems, big data storage formats, unstructured
documents, and multimedia files will broaden its
applicability.

2. Adaptive Threshold Tuning:

The current system relies on fixed threshold values (e.g., k,
w, q, and y) for triggering detection and pruning actions.
Future research could explore adaptive, context-sensitive
thresholding techniques that automatically adjust
parameters based on observed access patterns, seasonal
workloads, or emerging ransomware trends.

3. Integration with Existing Security Frameworks:

Although our focus was on preventing ransomware damage
at the backup layer, the solution could be integrated with
other cybersecurity tools—such as anomaly detectors,
intrusion prevention systems, or zero-trust frameworks—to
form a more holistic, multi-layered defense.

4. Performance Enhancements and Real-World
Validation:

While simulation results demonstrate the feasibility of the
proposed mechanism, future work should include
prototyping and field trials. Deploying In-Operation Off-
Site Backups in live production environments, measuring
real-time latency effects, evaluating user experience, and
assessing long-term storage impacts will provide valuable
insights and refinement opportunities.

5. Scalability and Distributed Architectures:

As organizational data environments grow, so do
throughput requirements. Future research could investigate
the scalability of the system, focusing on distributed backup
servers, load-balancing mechanisms, and fault-tolerant
architectures designed to handle larger user populations and
global data centers.

In conclusion, In-Operation Off-Site Backups addresses a
critical gap in ransomware protection by coupling near real-
time, record-level data versioning with robust probabilistic
detection methods. By halting malicious encryption attempts
before data becomes irreversibly compromised, our solution
offers a promising new safeguard for organizations seeking to
fortify their defenses against an ever-evolving threat landscape.

REFERENCE

[1] P. O’Kane, S. Sezer, and D. Carlin, “Evolution of ransomware,” Privacy,
Data Assurance, Security Solutions for Internet of Things, vol. 7, no. 5,
pp. 321–327, Sep. 2018.

[2] A. Hessler, T. Kakumaru, H. Perrey, and D. Westhoff, “Data obfuscation
with network coding,” Computer Communications, vol. 35, no. 1, pp. 48–
61, Jan. 2012.

[3] V. C. Craciun, A. Mogage, and E. Simion, “Trends in design of
ransomware viruses,” in Proceedings of the international conference on
security for information technology and communications, Nov. 2018, pp.
259–272.

[4] Zhi-Guo Chen, Ho-Seok Kang, Shang-Nan Yin, Sung-Ryul Kim,
“Automatic Ransomware Detection and Analysis Based on Dynamic API
Calls Flow Graph,” in Proceedings of the International Conference on
Research in Adaptive and Convergent Systems, pp. 196-201, September
2017.

[5] H. Oz, A. Aris, A. Levi, and A. S. Uluagac, “A survey on ransomware:
Evolution, taxonomy, and defense solutions,” ACM Computing Surveys
(CSUR), Feb. 2021.

[6] A. Ferreira, “Why ransomware needs a human touch,” in Proceedings of
international carnahan conference on security technology, 2018, pp. 1–
5.

[7] A. Karnik, S. Goswami, and R. Guha, “Detecting obfuscated viruses using
cosine similarity analysis,” in Proceedings of asia international
conference on modelling & simulation, Mar. 2007, pp. 1–6.

[8] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and D. G.
Andersen, “SplitScreen: Enabling efficient, distributed malware
detection,” Journal of Communication and Networks, vol. 13, no. 2, pp.
187–200, Apr. 2011.

[9] A. Malhotra and K. Bajaj, “A hybrid pattern based text mining approach
for malware detection using DBScan,” CSI Transactions on ICT, vol. 4,
no. 2–4, pp. 141–149, Dec. 2016.

[10] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu,
“Automated dynamic analysis of ransomware: Benefits, limitations and
use for detection,” arXiv preprint arXiv:1609.03020, Sep. 2016.

[11] A. Arabo, R. Dijoux, T. Poulain, and G. Chevalier, “Detecting
ransomware using process behavior analysis,” Procedia Computer
Science, vol. 168, pp. 289–296, 2020.

[12] J. Stiborek, T. Pevný, and M. Rehák, “Probabilistic analysis of dynamic
malware traces,” Computers & Security, vol. 74, pp. 221–239, May 2018.

[13] E. P. T. P. and S. G. Yoo, “Detecting and neutralizing encrypting
ransomware attacks by using machine-learning techniques: A literature
review,” International Journal of Applied Engineering Research, vol. 12,
no. 18, pp. 7902–7911, 2017.

[14] Y. e, L. Chen, S. Hou, W. Hardy, and X. Li, “DeepAM: A heterogeneous
deep learning framework for intelligent malware detection,” Knowledge
Information Systems, vol. 54, no. 2, pp. 265–285, Feb. 2018.

[15] M. hode, P. Burnap, and K. Jones, “Early-stage malware prediction using
recurrent neural networks,” Computers & Security, vol. 77, pp. 578–594,
Aug. 2018.

[16] S. Kok, A. Abdullah, M. Supramaniam, T. R. Pillai, and I. A. T. Hashem,
“A comparison of various machine learning algorithms in a distributed
denial of service intrusion,” International Journal of Engineering
Research for Techniques, vol. 12, no. 1, pp. 1–7, 2019.

[17] H. Fujinoki and L. Manukonda, “Proactive damage prevention from zero-
day ransomwares,” in International conference on computer
communication and the internet, Aug. 2023.

[18] J. Park, Y. Jung, J. Won, M. Kang, S. Lee, and J. Kim, “RansomBlocker:
A low-overhead ransomware-proof SSD,” in Proceedings of ACM/IEEE
design automation conference, 2019, pp. 1–6.

[19] José Antonio Gómez‐Hernández, Raúl Sánchez‐Fernández, and Pedro
García-Teodoro, “Inhibiting Crypto-Ransomware on Windows
Platform,” IET Information Security, vol. 16, no. 1, pp 64-74, 2022.

[20] Waqar Hassan Mir, Neeraj Goel, and Venkata Kalyan Tavva, “CARDR:
DRAM Cache Assisted Ransomware Detection and Recovery in SSDs,”
in Proceedings of the International Symposium on Memory Systems, pp.
104-115, December 2024.

[21] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De
Pasquale, Alessandro Barenghi, Stefano Zanero, and Federico Maggi,
“ShieldFS: a Self-healing, Ransomware-aware File System,” in
Proceedings of the 32nd Annual Conference on Computer Security
Applications, pp. 336 – 347, December 2016.

[22] Yong Jin; Masahiko Tomoishi; Satoshi Matsuura; and Yoshiaki
Kitaguchi, “A Secure Container-based Backup Mechanism to Survive
Destructive Ransomware Attacks,” in Proceedings of IEEE International
Conference on Computing, Networking and Communications, pp. 1-6,
March 2018.

[23] Michael Vrable, S. Savage, and G. Voelker, "BlueSky: a Cloud-Backed
File System for the Enterprise, in Proceedings of USENIX Conference on
File and Storage Technologies, pp. 1-14, February 2012.

