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Abstract—This paper proposes a backup-based defense 

mechanism that transparently and continuously secures 

production data against ransomware while ensuring controlled 

growth of backup copies. Ransomware attacks continue to 

intensify, often bypassing conventional static or dynamic 

detection-based security measures and inflicting irreparable harm 

on critical organizational data. Our approach focuses on a “just-

in-time” backup strategy—termed In-Operation Off-Site 

Backups—that interposes continuous and verifiable file 

duplication at each update, combined with a detection mechanism 

that can halt malicious encryption attempts as soon as they are 

discovered. The solution leverages Bloom filters and carefully 

managed linked-list backups to maintain a low false-negative miss 

detection rate on the order of 10-8, providing extremely high 

confidence that unauthorized data modifications will be detected 

before damage spreads. By employing fake fields, locality-aware 

thresholds, and fine-tuned probabilistic data structures, the 

system discriminates malicious activities from legitimate ones, 

preventing denial-of-service threats associated with frequent 

backups. Simulation results demonstrate that this approach can 

achieve highly reliable detection and sustainable storage 

utilization. The proposed method fills a crucial gap in ransomware 

protection by ensuring that backups remain both secure and 

manageable, thereby mitigating the risk of catastrophic data loss.  

Keywords—ransomware, offsite data backups, malware 

detection, Bloom filter, security risk management 

I. INTRODUCTION 

Despite significant effort by security administrators, 
ransomware attacks show no clear signs of slowing down, and 
attackers’ demands are increasing for recent targets. Based on 
recent trends, we focus on computer systems owned by 
organizations rather than personal users. Although three types of 
ransomware—lockers, exposures, and encrypters—have been 
reported [1], this work focuses on encrypters, as they are the 
most common form today. Specifically, we focus on protecting 
production data (i.e., document files) from malicious encryption 
as well as other forms of malicious modifications, such as data 
obfuscation and data shuffling [2, 3, 4]. 

The primary reasons for the difficulties in preventing 
ransomware are twofold. First, the vast attack surface—
including viruses, URL forgeries in web-based applications, 
system vulnerabilities, and threats from insiders (both 
intentional and unintentional)—makes it challenging to secure 
all potential entry points [5]. Second, it is difficult to prevent 
damages using existing proactive solutions [6], such as virus 
scanners, anomaly detection systems, and firewalls. Although 
these proactive solutions have positive effects, the challenge is 
that preventing damage from ransomware allows no time margin 

between when the ransomware becomes active and when it is 
detected. Although many existing methods for ransomware 
detections have been proposed [7-16], none of them satisfies all 
of the following requirements:  a solution without depending 
on metrics that are under controls of ransom attackers (such as 
malware signatures, anomy detections, and entropy values after 
encryption),  effectiveness to obfuscation ransomwares,  
protections against zero-day ransomwares, and  a control over 
false negatives. 

A straightforward approach would be to back up production 
data each time any update is made. Although this approach 
logically offers a safe solution, those backup-based solutions 
require detection of ransomware activities (otherwise they can 
be a cause of denial-of-service attacks [17]). We propose a 
backup-based protection using a detection metric out of 
attackers’ control (i.e., reference counts by distinct users).  We 
propose a method that avoids uncontrolled growth of backup 
copies by (i) unambiguously detecting malicious updates using 
fake fields and (ii) evaluating the trustworthiness of the record’s 
contents using reference counts without depending on existing 
detection methods. While our work should be extended to files 
with any internal structure, this paper assumes only those files 
that have a block structure, where each block is implemented as 
a record consisting of fields (typical database files). 

II. EXISTING WORK 

Many of the existing backup-based solutions consist of two 
functional components:  detections of ransomware activities 
and  recovering the last known good production data from 
backup copies after a detection of ransomware activities. Park 
proposed a solution using entropy value in production data for 
detection of ransomware activities [18].  However, as Chen 
argued, the entropy of production data will remain low if the 
production data is obfuscated [4]. Gomez-Hernandez proposed 
detections using honeypots [19].  Detections using honeypots 
have two weaknesses: delay before detections and high false 

negatives ( 10-2). Mir [20] and Chen [4] applied machine-
learning to ransomware detections, which share the same 
weaknesses for [19]. It is hard to achieve low false negatives (< 
10-6) especially to zero-day ransomwares. Continella proposed 
a detection method using anomaly detection by detecting 
deviations from the expected legitimate file I/O patterns [21]. 
The major risk is that ransom attackers will counter-detect the 
expected legitimate file I/O patterns to evade detections. The 
backup-based solutions without ransomware activities [22, 23] 
will not be a reliable solution, which may result in a huge 
volume of backups, as well as their incapability of identifying 
the last known good copy of production data.  TABLE 1 
summarizes the limitations of the existing solutions. 



TABLE 1. LIMITATIONS OF EXISTING BACKUP-BASED 
SOLUTIONS 

 

III. PROPOSED SOLUTIONS 

A new solution is designed for coping with the four 
limitations in the existing solutions:  without depending on 
metrics that are under controls of ransom attackers,  
effectiveness to obfuscation ransomwares,  protections 
against zero-day ransomwares, and  a control over false 
negatives. The proposed solution consists of both hardware and 
software components. Its hardware components include 
production host computers (denoted production hosts) and one 
or more backup servers. Production hosts are where users create 
production data, which is stored on the backup servers as files. 
Users issue commands to backup servers to read, update, add, or 
delete their data. 

The software components consist of a set of secure system 
calls installed at each production host and a set of the processes 
executed at backup servers. These processes manage files and 
their backup copies as a linked list for each record in each 
backed-up file. We denote the set of processes at a backup server 
as Server-Side Implementation (SSI). SSI consists of processes 
at backup servers that monitor commands from users to detect 
malicious modifications by ransomware, halt their file accesses 
to prevent damage, and dynamically prune unnecessary backup 
copies. Fig. 1 depicts the overall structure of the proposed 
backup-based solution. 

 

Fig 1. Overview of the system architecture of the backup-based solution. 

A. Hardware Component 

The two primary hardware components are: 

• Production Hosts: Computers where users interact with 
applications that generate data and use (read, update, add, 
and delete) the data as files. A set of new system calls is 
installed on each production host as part of the operating 
system by a qualified security administrator, ensuring 
users cannot install a bogus set of system calls or tamper 
with them once installed. 

• Backup Server: A remote file server that maintains the 
files created by users and their backup copies. It creates 
backup copies of production files and investigates file I/O 

commands from users to (1) detect malicious 
modifications by ransomware and prevent further 
damage, and (2) purge unnecessary backup copies to 
prevent uncontrolled growth of backups. 

B. Software Components 

• Secure System Calls: Each time a user at a production host 
accesses a record in a file stored at a backup server, the 
secure system calls transmit file I/O commands to a 
backup server. 

• Server-Side Implementation (SSI): Upon receiving a file 
I/O command from a user, the SSI at a backup server 
investigates the command, consisting of three possible 
outcomes: 

(a) If SSI confirms the legitimacy of the contents of the 
record using reference counts, it purges all backup 
copies of the record. 

(b) If SSI confirms that the command is ransomware 
activity by using fake record fields, it freezes the entire 
file system to prevent further damage to any files stored 
on the backup server. 

(c) If SSI can neither confirm if the command is 
ransomware activity nor if the contents of the record is 
legitimate, it attaches the modified record to the end of 
the linked list of its backup copies. 

C. Proposed Procedure 

SSI employs two methods for detecting ransomware 
activity: 

1. Fake Record Fields: Dummy fields inserted into each 
record by SSI to help identify ransomware activity. 
Legitimate users are not expected to interact with fake 
fields, while ransomware may attempt to read, modify, or 
encrypt them without their knowledge about the fake fields. 

2. Reference Counts: SSI tracks four reference counts for 
evaluating the trustworthiness of the record’s contents or if 
backed-up copies of a deleted record can be permanently 
purged. 

• CRECORD-READ(i, j): The distinct user count of users who 
read record i in file j. Initialized as 0 when a new file is 
created or a new record is inserted into a file. 

• CFILE-READ(j): The distinct user count of users who read 
any record in file j. Initialized at 0 when a new file is 
created. 

• CFILE-UPDATE(j): The distinct user count of users who 
update any record in file j. Initialized at 0. 

• CDELETED-RECORD (i, j): The distinct user count of users who 
would have read or updated record i in file j after the 
record is deleted. Initialized at 0 when a record or a file 
is deleted. 

In addition to the four reference counts, SSI attaches 
UUPDATE(i, j) to record i in file j. It is initialized as an invalid user 
ID, such as “-1”, when a new record i is added to file j or file j 
is created. 

Proposed by Primary Detection Issue(s)

Chen et. al. [4] sandbox delay before detections, high false postives

Park et. al. [18] entropy not effective to obfuscation ransomwares
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• UUPDATE(i, j): The ID of the user (an unsigned integer) who 
made the last update to record i in file j.   

Detection by Fake Fields 

Backup servers insert fake fields into each record when a 
new file is created. Each fake field is a dummy field whose 
content is automatically generated by the backup servers, which 
should be deceptive enough to prevent attackers from 
distinguishing them from production fields. Only the backup 
servers can distinguish fake fields from production fields. See 
Fig. 2 for visualizations of fake fields. 

 

Fig 2. Visualizations of fake fields. Left (a) is the record structure and right (b) 
is the file structure. 

As a proactive measure, SSI employs fake fields to flag 
suspicious activity. We consider two types of commands: read 
and update. We define an update command to be one that 
replaces the content in one or more fields in a record. When SSI 
receives a read or a update command, it executes the following 
procedure for identifying suspicious activities using fake fields 
in each record.  If a read or update operating results in either case 
(a) or (c), the ransomware detections by reference counts start. 

Fig 3. READ/UPDATE command procedure. 

Detection by Reference Counts 

When SSI cannot determine the legitimacy of an update 
record or detect ransomware activities using fake fields, it 
proceeds to the second phase. To differentiate ransomware 
activity from legitimate user actions, we introduce reference 
counts along with threshold values that characterize normal 
behavior. When a new file is created, SSI creates a backup copy 
of each record and attaches the first three reference counts (i.e., 
CRECORD-READ(i, j), CFILE-READ(j), and CFILE-UPDATE(j)) to a record or 
a file after they are initialized. When a record or a file is deleted, 
CDELETED-RECORD (i, j) is attached to each deleted record. 

SSI uses the following Bloom filters to identify distinct 
users. 

• BFRECORD-READ(i, j): A Bloom filter that approximates the 
set of user IDs who read record i in file j. Initialized at 

 when a new file is created or a new record is inserted 
into a file. 

• BFFILE-READ(j): A Bloom filter that approximates the set 
of user IDs who read at least one record in file j. 

Initialized at  when a new file is created. 

• BFFILE-UPDATE(j): A Bloom filter that approximates the set 
of user IDs who updated at least one record in file j. 

Initialized at . 

• BFDELETED-RECORD (i, j): A Bloom filter that approximates 
the set of user IDs who would have read or updated 
record i in file j after the record is deleted. Initialized at 

 when a record is inserted into a file or a file is deleted. 

To detect ransomware activity that deviates from expected 
data access patterns, SSI uses the following parameters: 

k: The minimum number of distinct users who read the 
contents of a record to ensure it has not been maliciously 
updated, obfuscated, or shuffled by ransomware. 

w: The number of timeslots (TSLOT) considered in the sliding 
window for recording the IDs of users who have updated at 
least one record in a file. 

q: The ratio the number of the files in which at least one record 
is updated by a user to the total number of the existing files, 
calculated over the most recent 𝑤 timeslots ([TSLOT]w). 

y: The threshold determining when a deleted record can be 
permanently purged. SSI retains deleted records even after 
they are “deleted” from a production file, storing them in a 
linked list of deleted records. A deleted record is purged 
when a certain number (y) of legitimate users implicitly 
agree to its removal. 

TSLOT: A fixed time interval during which the IDs of users who 
have updated at least one record in a file are recorded. To 
detect deviations from temporal locality, we use a sliding 
window approach with a window size of w. The w most 
recent timeslots is denoted by [TSLOT]w. Since w is a fixed 
parameter, we do not need to retain the entire history of 
timeslots, and so may truncate it to the most recent w 
timeslots for efficiency. 

NFILES(s): An integer counting the number of files updated by 
user 𝑠 during the most recent 𝑤 timeslots [TSLOT]w. 

UMAX_FILES: An integer representing the largest number of files 
updated by a user during the most recent 𝑤  timeslots 
([TSLOT]w). 

Procedures Executed by SSI 

The following procedures are executed by SSI for detecting 
ransomware activity. When a new record i is added to file j by 
user ID s, SSI executes the procedure shown in Fig. 4. When SSI 
receives a read command from user s to record i in a file j, SSI 
executes the procedure shown in Fig. 5. When SSI receives a 
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(a) If the read or the update command is applied only to 

non-fake fields, SSI proceeds to detection using the 

reference counts. For example, SELECT * FROM 

table WHERE field = <non-fake-field>. 

(b) If the read or the update command is applied only to 

fake fields, SSI raises an attack alert and halts the 

system. For example, SELECT * FROM table 

WHERE field = <fake-field>. 

(c) If the read or the update command is applied to both 

fake and non-fake fields (e.g., using SELECT * FROM 

table), SSI proceeds to detection using the reference 

counts. 



command for updating record i in file j by user s, SSI performs 
the procedure shown in Fig. 6. 

Fig 4. ADD command procedure. 

Fig 5. READ command procedure. 

Fig 6. UPDATE command procedure. 

Fig 7. On-command procedure for DELETE command 

Fig 8. Post-command procedure for DELETE 

In Fig. 6, the last four steps in the Update Command (steps 
3-6, Fig. 6)) are for detecting malicious modifications by 
ransomware based on the expected locality in data references. 
Essentially, if a user modifies a large number of records in a 
large number of files (deviations from the spatial locality) in a 
short amount of time (deviations from temporal localities), a set 
of such modifications should be flagged as suspicious. As the 
Update Command shows, parameter q determines the sensitivity 
in the spatial locality and parameter w determines the sensitivity 
in the temporal locality. 

The procedure for deleting an existing record in a file 
consists of the on-command procedure, which SSI performs 
when it receives a command to delete existing record i in file j 
and the post-command procedure, which SSI performs after 
SSI deletes an existing record from the production copy of a 
file. 

SSI executes the following procedure before SSI deletes 
record i in file j by user s. The on-command procedure is as 

1. SSI inserts s to BFRECORD-READ(i, j) and BFFILE-READ(j). 

2. SSI sets both CRECORD-READ(i, j) and CFILE-READ(j) to 0. 

Then, SSI proceeds to 3. 

3. SSI adds record i to file j. SSI terminates the procedure. 

1. If (s = UUPDATE(i,j)), SSI terminates the procedure.  

Otherwise, proceed to 2. 

2. If (s  BFRECORD_READ(i,j)), SSI increments 

CRECORD_READ(i,j) by one (+1) and inserts s to 

BFRECORD_READ(i,j). SSI proceeds to 3. 

3. If (s  BFFILE_READ(j))), SSI increments CFILE_READ(j) by 

one and inserts s to BFFILE_READ(j).  SSI proceeds to 4. 

4. If (CRECORD_READ(i,j) < k), SSI terminates this procedure.  

Otherwise, proceed to 5. 

5. SSI performs the following tasks: 

i. Delete all backup copies of record i in file j. 

ii. Reset BFRECORD-READ(i, j) =  and CRECORD-READ(i, j) 

= 0. 

iii. Terminate the procedure. 

1. SSI sets s = UUPDATE(i, j), resets BFRECORD-READ(i, j) to , 

and resets CRECORD-READ(i, j) = 0. Then, SSI proceeds to 

2. 

2. SSI appends record i at the end of the linked list of the 

deleted records. Then, it proceeds to 3. 

3. SSI deletes record i from file j. SSI terminates the 

procedure. 

1. When another user u applies either read or update 

command to record i in file j, SSI scans the linked list 

of the deleted records to identify the records (i.e., record 

ID i and the file ID j) that match with the record 

specifiers (e.g. WHERE field for queries). If a matching 

record is not found in the linked list of the deleted 

records, SSI terminates post-command procedure. 

Otherwise, SSI proceeds to 2. 

2. For record (i, j) found in the linked list of the deleted 

records, SSI checks if its UUPDATE(i, j) = u. If it is, SSI 

terminates the post-command procedure.  Otherwise 

SSI proceeds to 3. 

3. SSI checks if u is in BFRECORD-READ(i, j). If it is, SSI 

terminates the post-command procedure. Otherwise, it 

increments CRECORD-READ(i, j) by one. SSI proceeds to 4. 

4. SSI checks if the number of the distinct users who 

would have referenced a deleted record (CRECORD-READ(i, 

j)) exceeds a threshold, y, by checking the condition 

if (CRECORD-READ(i, j)  y) 

If the count does not exceed the threshold value (y), SSI 

terminates the procedure. Otherwise, SSI proceeds to 5. 

5. SSI permanently purges the deleted record (record (i, j)) 

from the linked list of the deleted records. Then, SSI 

terminates the post-command procedure. 

1. If s = UUPDATE(i, j), then the process terminates. 

Otherwise, proceed to 2. 

2. SSI performs the following tasks in order: 

i. Append the current record (one before that update 

is applied) at the end of the backup linked list of 

record i in file j, and then apply the update(s) to the 

current record. 

ii. Set s = UUPDATE(i, j) to the current record. 

iii. Insert 𝑠 to BFFILE-UPDATE(j). Then, proceed to 3. 

3. Calculate the number of the files updated by user s, 

during the w most recent timeslots by scanning BFFILE-

UPDATE(k) for each file in the system. Save the total 

number of the files updated by user s to NFILE(s). Proceed 

to 4. 

4. Identify the IDs of the users who updated the largest 

number of files during the most recent timeslots as 

follows. Then proceed to 5. 

𝑈𝑀𝐴𝑋−𝐹𝐼𝐿𝐸𝑆 = 𝑚𝑎𝑥(𝑁𝐹𝐼𝐿𝐸(𝑠)). 

5. If 𝑈𝑀𝐴𝑋−𝐹𝐼𝐿𝐸𝑆 <
𝑛

𝑞
, where 𝑛 is the total number of the 

existing files in the system, then SSI terminates the 

procedure. Otherwise, proceed to 6. 

6. SSI freezes the whole system by declaring an ongoing 

ransomware. Then, SSI terminates the procedure. 



shown in Fig. 7. Fig. 8 shows the procedure SSI executes after 
record i is deleted from file j. 
 

IV. PERFORMANCE EVALUATIONS 

We evaluate the performance of the proposed offsite backup 
mechanism. We provide two analyses to assess its 
effectiveness. 

Analysis 1: False negative miss-setection rate and the 

required reference counts by distinct users () 

In this analysis, we evaluate the effectiveness of the offsite 
backup by assessing the false negative miss detection rate, Pmiss 
which quantifies the probability that all users fail to detect a 
malicious update in any file. 

 

Fig. 9 the R-map matrix for risk management. 

We adopt the R-map matrix as the benchmark for safety 
levels in preventing ransomware damage [26] (Fig. 9). For 
example, a false negative miss detection rate Pmiss = 10-6 means 
the system fails to detect one out of 106 ransomware attempts. 

We compute  for different values of p and various target 
false negative miss detection rate (Pmiss) with w fixed at 10 and 
N (N: the number of files in a system) fixed at 10 (Fig. 10). We 

see that as p increases, the required  decreases for a given Pmiss. 
At p = 0.01, achieving Pmiss = 10-8 requires 19 distinct users in 
each timeslot, while achieving Pmiss = 10-4 requires 16 distinct 

users. As p increases, the required  decreases. 

 

Fig. 10 Expected number of distinct users  for achieving different target false 
negative detection rates Pmiss or different user malicious update 
recognition probabilities p. 

Fig. 11 shows the expected number of user references () to 
achieve a particular miss rate (Pmiss) when we reduce N to 1. We 
see that the number of files significantly impacts the expected 

, especially when p is small (e.g., p = 0.001). This observation 

suggests that the proposed backup mechanism is more effective 
in systems with a larger number of files. 

With p = 0.001 and  = 10, Fig. 12 shows how Pmiss decreases 
as w increases. For N = 1000, Pmiss drops below 10-8 at w = 5, 
while for smaller N, achieving the same Pmiss requires larger w. 
These results suggest that the proposed backup mechanism is 
well-suited for organizational systems with a reasonable number 
of files and frequent read accesses. 

 

Fig. 11 Expected number of distinct users  when N = 1 and all other 
parameters identical to Fig. 10. As the number of files increases, the 

expected  also increases. 

 

Fig. 12 False negative miss detection rate Pmiss for p = 0.001 and  =10. 

We developed a formula to deduce the expected  (the 

reference counts by  distinct users) for target w, N, and Pmiss. 
The following is the process of our deduction. 

Theorem 1: Consider a system with N files subject to potential 

malicious updates by ransomwares, monitored by  distinct 
users over w timeslots. Let p, 0 < p < 1, be the probability that a 
single user detects a malicious update in a file once it has 
occurred. 

We refer to Pmiss as the false negative detection rate, a key 
metric for assessing the effectiveness of the offsite backup in 
preventing ransomware damage. 

Proof: By assumption, a user detects a malicious update with 
probability 𝑝, so the probability that this user does not detect it 

is 1 - p. Assuming independence across all  users, w timeslots, 
and N files, the probability that no user detects the malicious 
update in any file over all timeslots is the product of the 
individual non-detection probabilities. Thus, 

𝑃miss = (1 − 𝑝)𝜆×𝑤×𝑁         (1) 
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Next, we derive the expected number of distinct users,  
required to achieve a target false negative detection rate Pmiss. 

Corollary 1: Given a target false negative detection rate Pmiss 
and known parameters p, w, and N, the expected number of 

distinct users  required to achieve this target rate is: 

𝜆 =
𝑙𝑜𝑔(𝑃miss)

𝑙𝑜𝑔(1−𝑝)×𝑤×𝑁
          (2) 

Proof: Starting from Theorem 1, taking the logarithm of both 
sides yields: 

𝑙𝑛(𝑃miss) = 𝑙𝑜𝑔((1 − 𝑝)𝜆𝑤𝑁) = 𝜆𝑤𝑁𝑙𝑜𝑔(1 − 𝑝)        (3) 

Solving for , we obtain: 

𝜆 =
𝑙𝑜𝑔(𝑃miss)

𝑤𝑁𝑙𝑜𝑔(1−𝑝)
          (4) 

Analysis 2: Bloom Filter Configuration and Performance and 
its impact to the required reference counts by distinct users 

A Bloom filter is a probabilistic data structure often used for 
membership queries, trading space efficiency for a controlled 
false-positive rate, denoted 𝜀. For this study, Bloom filters are 
critical in managing backup data operations, ensuring minimal 
redundancy while safeguarding against malicious 
modifications. The key parameters for Bloom filters are: 

• Size (m): The number of bits in the Bloom filter. 

• Hash Function Count (k): The number of hash functions 
used to map elements to the Bloom filter. 

Impact of Bloom Filter Size (m) and Hash Function count (k) 

We limit this analysis to a fixed number of distinct users N 
= 100 and we estimate the sensitivity to the false positive rate 
(FPR) with respect to the Bloom filter size m and number of 
hash functions k. TABLE 2 shows the expected FPR for filter 
size (m = 256 to 8192 bits) with k = 1, 2, 3, 4, and 5 (Fig. 13). 

For a given number of distinct users ( = 100), the size of 
the Bloom filter directly impacts the probability of false 
positives. A Bloom filter size of m = 256 bits results in a large 
false positive rates: 

• 29.4, 32.9, 39.0, and 46.5% for hash function counts k = 2, 
3, 4, and 5, respectively. 

Doubling the Bloom filter size to m = 512 bits reduces the 

false positive rate to around 10% (  0.1), while Bloom filter 
sizes of m = 1024 bits or larger reduce this probability to under 
3.2%. 

In addition, it is important to know the number of distinct 

users interacting with the system, denoted  as before. The 

probability that the Bloom filter reports a false positive  for a 
non-interacting user, is given by: 

𝜀 ≈ (1 − 𝑒−𝑘𝜆 𝑚⁄ )
𝑘
         (5) 

The optimal k for a given m and  is given by: 

𝑘∗ =
𝑚

𝜆
𝑙𝑛2           (6) 

In practice,  varies over time or is not known apriori, 
necessitating a range of k (and m) values to accommodate 
different scenarios. A larger value of k also increases the 
computational cost of hashing, potentially impacting system 
performance. Balancing 𝜀 and computational overhead is thus 
critical. 

TABLE 2. EXPECTED FPR FOR FILTER SIZE AND 
NUMBER OF HASH FUNCTIONS 

 

 

Fig. 13 False positive rate as a function of Bloom filter size m and hash 

function count k. 

Theorem 1: If we report the number of distinct users that test 

positive in the Bloom filter as app, the expected number of users 
that test positive in the Bloom filter is given by: 

E(app) =  +  × n          (7) 

a standard deviation: 

𝜎(𝑎𝑝𝑝) = √𝜀(1 − 𝜀) × 𝑛          (8) 

a bias is given: 

𝑏𝑖𝑎𝑠(𝜆𝑎𝑝𝑝) = 𝜀 × 𝑛          (9) 

a 95% confidence interval (using the CLT) given by 

𝜆 + 𝑛𝜀 ± 1.96√𝑛𝜀(1 − 𝜀)         (10) 

where 𝑛 are the number of users not inserted into the Bloom 

filter,  is the false positive rate of the Bloom filter, and  is the 
number of users inserted into the Bloom filter. 

Proof: We have  positives and 𝑛 negatives. The Bloom filter 

has a true positive rate of 1, so all  positives will test positive. 

However, the false positive rate  will cause some of the n 
negatives to test positive. 

To compute the expectation and the variance, we model each 
of the n negatives as a Bernoulli random variable with 

probability  of testing positive. The sum of these n Bernoulli 

random variables has an expectation of n and a variance of (1-
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)n. Thus, the expectation of the number of users that test 
positive in the Bloom filter is given by the number of positives 

 plus the expectation of the number negatives n that test 

positive, which in sum is  + n. 

The standard deviation is just the square root of the variance, 
the bias is just the expectation of the number of false positives, 
and the confidence interval is a direct application of the Central 
Limit Theorem (CLT). 

The accuracy and precision of the 𝜆 is important, as many of 
our parameters depend on the number of distinct users 𝜆. We see 

that app is a positively biased estimate of 𝜆  due to the false 
positives. As 𝜀 increases, the bias in the estimate also increases. 
We may adjust the estimate of 𝜆 by subtracting the bias to obtain 
a less biased estimate of 𝜆. This is given by: 

𝜆 = 𝜆𝑎𝑝𝑝 − 𝜀𝑛          (11) 

which is an unbiased estimator. 

Reasonable Configurations 

A 64-byte (m = 512 bits) Bloom filter represents a 
reasonable compromise between space and performance, 
achieving a false-positive rate of approximately 10%. 

Estimating the Number of Distinct Users 

Since the integrity of the system depends on accurate 

estimates of the number of distinct users  inserted into the 

Bloom filter, we compute the biased estimate app and the 

unbiased estimate 𝜆 . For this configuration, the apparent 
number of users is overestimated by 10%: 

 𝜆𝑎𝑝𝑝 ≈ 90 + 0.1 × 100 = 110        (12) 

We apply the bias-correction to obtain the unbiased estimate: 

𝜆 = 110 − 0.1 × 100 = 100        (13) 

 

Fig. 14. the predictable impact of the false positives (how much sooner 

SSI will incorrectly halt a system due to the expected false positives in 

Bloom filter 

Fig.14. visualizes (app)/ ratio for various FPRs () when  

= 100,000.  For n/ ratio = 0.01 (n = 1 and  = 100), the (app)/ 
ratio is estimated to be 0.01% (SSI will halt a system 0.01% 

sooner than it should in terms of reference counts) for  = 0.01, 

0.02% for  = 0.02, 0.03% for  = 0.03, 0.04% for  = 0.04, and 

0.05% for  = 0.05.  For n/ ratio = 0.5 (n = 50 and  = 100), the 

(app)/ ratio is estimated to be 0.5% (SSI halts a system 0.5% 

sooner in terms of reference counts) for  = 0.01, 1.0% for  = 

0.02, 1.5% for  = 0.03, 2.0% for  = 0.04, and 2.5% for  = 0.05. 

These results (as shown by equation (7)) conclude that the 
impact of the false positives (i.e., the number of distinct users 
who did not do a read operation for a time slot, but tested 

positive) can be estimated using a liner regression model ( × n).  

For example, if ((app)/) ratio = 1.01 (i.e., 101.0%) because of 
the 1% FPR, the SSI will halt a system 1% sooner in terms of 
user reference count. 

Justification for 64-byte Bloom filters 

Given the space constraints and operational needs of backup 
servers, the results demonstrate that: 

1. Increasing the Bloom filter size beyond 1024 bits yields 
diminishing returns, with false-positive probabilities 
already reduced to under 3.2. 

2. A 512-bit Bloom filter offers a balance of accuracy and 
resource efficiency, with a manageable false-positive rate of 
around 10%. 

Our simulations confirm that this configuration is well-
suited for environments where a tradeoff between space 
overhead and accuracy is acceptable. For instance, maintaining 
a 10% false-positive rate does not significantly compromise the 
system’s ability to protect production payloads, such as file 
records. 

V. CONCLUSIONS AND FUTURE WORK 

This paper introduced a novel backup-based solution, 
referred to as In-Operation Off-Site Backups, designed to 
protect critical organizational data against the escalating threats 
posed by ransomware. Unlike conventional detection-based 
strategies that rely solely on known signatures or behavior 
profiles, our method blends continuous, fine-grained versioning 
of production data with a probabilistic and locality-aware 
detection mechanism. By leveraging Bloom filters, fake record 
fields, and dynamically managed linked-list backups, the 
proposed system achieves a highly reliable false-negative 
detection rate - on the order of 10-8 - while simultaneously 
limiting backup explosion and preserving system performance. 

A key innovation of the approach is its capacity to 
distinguish genuinely benign user updates from malicious 
activities attempting to encrypt or obfuscate large amounts of 
data. The combination of on-command backup creation, 
reference count monitoring, and strategically placed fake fields 
ensures that ransomware operations cannot silently propagate. 
Once anomalous behavior is detected, the system halts further 
modifications, effectively containing damage at the earliest 
possible stage. Our results indicate that In-Operation Off-Site 
Backups can be tuned to maintain extremely low false-negative 
probabilities without incurring unsustainable storage or 
computational overhead. For our future work, we currently 
recognize the following five tasks: 

1. Wider Application Scenarios: 

While the current design assumes files with a record-based 
structure (e.g., typical database files), the approach should 
be extended and adapted to files of varying formats and 
internal structures. Enhancing the solution to handle diverse 
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file systems, big data storage formats, unstructured 
documents, and multimedia files will broaden its 
applicability. 

2. Adaptive Threshold Tuning: 

The current system relies on fixed threshold values (e.g., k, 
w, q, and y) for triggering detection and pruning actions. 
Future research could explore adaptive, context-sensitive 
thresholding techniques that automatically adjust 
parameters based on observed access patterns, seasonal 
workloads, or emerging ransomware trends. 

3. Integration with Existing Security Frameworks: 

Although our focus was on preventing ransomware damage 
at the backup layer, the solution could be integrated with 
other cybersecurity tools—such as anomaly detectors, 
intrusion prevention systems, or zero-trust frameworks—to 
form a more holistic, multi-layered defense. 

4. Performance Enhancements and Real-World 
Validation: 

While simulation results demonstrate the feasibility of the 
proposed mechanism, future work should include 
prototyping and field trials. Deploying In-Operation Off-
Site Backups in live production environments, measuring 
real-time latency effects, evaluating user experience, and 
assessing long-term storage impacts will provide valuable 
insights and refinement opportunities. 

5. Scalability and Distributed Architectures: 

As organizational data environments grow, so do 
throughput requirements. Future research could investigate 
the scalability of the system, focusing on distributed backup 
servers, load-balancing mechanisms, and fault-tolerant 
architectures designed to handle larger user populations and 
global data centers. 

In conclusion, In-Operation Off-Site Backups addresses a 
critical gap in ransomware protection by coupling near real-
time, record-level data versioning with robust probabilistic 
detection methods. By halting malicious encryption attempts 
before data becomes irreversibly compromised, our solution 
offers a promising new safeguard for organizations seeking to 
fortify their defenses against an ever-evolving threat landscape. 
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