
Maximizing Confidentiality in Encrypted Search
Through Entropy Optimization

Alexander Towell
atowell@siue.edu

Abstract

Encrypted search systems enable information retrieval over encrypted data while preserving
confidentiality of queries and documents. However, observable patterns in encrypted queries,
access patterns, and result sets can leak information about plaintext content. We present an
information-theoretic framework for analyzing and improving the confidentiality of encrypted
search systems. We model encrypted search activities as random processes and measure their
entropy, comparing observed entropy against the maximum entropy possible under system con-
straints such as query arrival rates, vocabulary size, and document collection size. We derive
closed-form solutions for the maximum entropy distribution and show that the ratio of observed
to maximum entropy provides a quantitative measure of confidentiality bounded between 0 and
1. Since entropy can be estimated using lossless compression, our framework enables practical
measurement without requiring explicit probabilistic models. We demonstrate that confidential-
ity can be systematically improved through techniques such as homophonic encryption, artificial
query injection, and query aggregation, each trading specific resources for entropy gains. A case
study shows that a typical system achieving 59% efficiency can be improved to 85% efficiency
with moderate space and bandwidth overhead. Our approach provides principled guidance for
balancing confidentiality against performance in encrypted search deployments.

Contents

1 Introduction 4
1.1 The Information Leakage Problem . 4
1.2 An Information-Theoretic Approach . 4
1.3 Contributions . 5

2 Related Work 5
2.1 Encrypted Search Systems . 5
2.2 Attacks on Encrypted Search . 6
2.3 Information-Theoretic Approaches . 6
2.4 Oblivious Computation . 6
2.5 Anonymity and Mix Networks . 6

3 Encrypted search model 6

4 Probabilistic model 15
4.1 Hidden query and result set streams . 16
4.2 Generative model . 18

1

5 Entropy and information 19
5.1 Principle of maximum entropy . 21

6 Maximum entropy system 24

7 Maximum Entropy Under Constraints 26
7.1 System Constraints . 27
7.2 Maximum Entropy for Inter-Arrival Times . 27
7.3 Maximum Entropy for Search Agent Identities . 28
7.4 Maximum Entropy for Hidden Query Cardinality . 28
7.5 Maximum Entropy for Trapdoor Selection . 29
7.6 Maximum Entropy for Result Sets . 29
7.7 Joint Maximum Entropy . 29
7.8 Minimum Mutual Information . 30

8 Increasing the entropy of the system 30
8.1 Multiple secure indexes per document . 30
8.2 Artificial secure indexes . 31
8.3 Homophonic encryption . 31
8.4 Query aggregation . 33
8.5 Artificial trapdoors . 33
8.6 Artificial hidden queries . 34

8.6.1 Alternative solution . 35
8.7 Obfuscating search agents . 36
8.8 Injecting artificial search agents . 36
8.9 Obfuscating inter-arrival times . 37

8.9.1 Estimating search agent arrival rates . 39

9 Case Study: Typical Encrypted Search System 39
9.1 System Parameters . 39
9.2 Baseline: Simple Substitution Cipher . 40

9.2.1 Observed Distribution . 40
9.2.2 Entropy Calculation . 40
9.2.3 Efficiency . 40

9.3 Improvement 1: Homophonic Encryption . 41
9.3.1 Strategy . 41
9.3.2 Entropy Improvement . 41
9.3.3 Cost . 41

9.4 Improvement 2: Artificial Queries . 41
9.4.1 Entropy Improvement . 41
9.4.2 Cost . 42

9.5 Combined Strategy . 42
9.6 Attack Resistance . 42

9.6.1 Baseline Vulnerability . 42
9.6.2 Improved Resistance . 42

9.7 Recommendations . 42
9.8 Scenario 2: Large-Scale Cloud Deployment . 43
9.9 Scenario 3: High-Sensitivity Medical Records . 43

2

9.10 Summary . 44

10 Conclusion 44
10.1 Summary of Contributions . 44
10.2 Implications for Practice . 44
10.3 Limitations and Assumptions . 45
10.4 Future Work . 45
10.5 Closing Remarks . 45

Appendices 46

A Detailed Entropy Derivations 46
A.1 Geometric Distribution Entropy . 46
A.2 Exponential Distribution Differential Entropy . 46
A.3 Joint Entropy Decomposition . 47

B Compression-Based Entropy Estimation 47
B.1 Theoretical Foundation . 47
B.2 Practical Estimators . 48
B.3 Bias Correction . 48

C Statistical Hypothesis Testing 48
C.1 Comparing Entropy Estimates . 48

D Notation Reference 49
D.1 Random Variables and Distributions . 49
D.2 Encrypted Search Components . 49
D.3 Entropy and Information Measures . 49

List of Tables

1 The known parameters of the encrypted search system. 14
2 Code for search agents . 27
3 Unary code for inter-arrival time . 27
4 Parameters for case study system . 40
5 Comparison of strategies . 42
6 Parameters for large-scale cloud scenario . 43
7 Parameters for high-sensitivity scenario . 43

List of Figures

1 Two search agents submitting a query to the encrypted search system where a simple
substitution cipher is being used. 13

2 The probability model, where a sequence of plaintext random queries is transformed
into a sequence of random hidden queries. 18

3 Accuracy vs sample size where N = 1000 for several different entropies 32
4 Testing . 32
5 Inter-arrival time obfuscation . 38

3

List of Algorithms

1 Cryptographic substitution cipher policy for mapping plaintext queries to hidden queries 9
2 Cryptographic noise policy decorator for hidden queries 10
3 Plaintext document to secure index bag-of-words generator 11
4 Generative model of a hidden query time series . 19
5 Homophonic substitution cipher . 33

1 Introduction

Information retrieval over encrypted data presents a fundamental tension: enabling search function-
ality requires revealing some information about queries and documents, yet preserving confidential-
ity requires hiding this information. An information retrieval process begins when a search agent
submits a query to an information system, where the query represents an information need. The
system returns relevant objects, typically documents, satisfying that need.

encrypted search (ES) extends this paradigm to untrusted environments where an encrypted
search provider obliviously retrieves confidential objects satisfying confidential information needs
of authorized search agents. The system employs two cryptographic components: secure indexes
provide queryable encrypted representations of confidential documents (constructed using techniques
such as Bloom filters, perfect hash functions, or other approximate membership structures), while
hidden queries provide one-way encrypted representations of plaintext queries.

Ideally, both secure indexes and hidden queries would reveal no information beyond what is
necessary for retrieval. They would appear as uniform uncorrelated noise with lengths uncorrelated
to their plaintext counterparts. However, functionality requirements create an inherent tradeoff:
for an untrusted system to perform oblivious searches, hidden queries must map to relevant secure
indexes, necessarily revealing some information through observable patterns.

1.1 The Information Leakage Problem

Claude E. Shannon, in his seminal 1949 paper Communication Theory of Secrecy Systems[16],
established two essential properties for secure encryption:

1. Confusion obscures relationships between plaintext and ciphertext, ensuring ciphertext statis-
tics depend on plaintext in ways too complex to exploit. Simple substitution ciphers fail
this requirement: preserving frequency distributions allows adversaries to recover plaintexts
through statistical analysis.

2. Diffusion ensures each plaintext symbol affects many ciphertext symbols, ideally causing every
plaintext symbol to influence every ciphertext symbol.

Encrypted search systems struggle to achieve Shannon’s ideals. Even with strong cryptographic
primitives, observable patterns leak information. Recent attacks demonstrate that access patterns[9,
2], query volumes[8], and timing information enable adversaries to reconstruct significant portions
of plaintext queries and document content.

1.2 An Information-Theoretic Approach

Rather than relying solely on computational hardness assumptions, we analyze encrypted search
through information theory. Our approach models encrypted search activities—hidden queries,

4

inter-arrival times, search agent identities, and result sets—as random processes and measures their
entropy. We then derive the maximum entropy achievable under system constraints (query rates,
vocabulary size, collection size) and define confidentiality as the ratio of observed to maximum
entropy, yielding a score between 0 (predictable) and 1 (maximally unpredictable). Since entropy
equals optimal compression length, we can estimate it practically using lossless compressors without
explicit probabilistic models.

This framework quantifies fundamental confidentiality limits and provides principled guidance
for improvement through entropy maximization.

1.3 Contributions

This paper makes the following contributions:

1. An information-theoretic framework for analyzing encrypted search confidentiality through
entropy measurement

2. Derivation of maximum entropy distributions under realistic system constraints with closed-
form solutions

3. A practical confidentiality metric based on entropy ratios that enables comparison across
systems and configurations

4. Techniques for systematically improving confidentiality including homophonic encryption, ar-
tificial queries, and query aggregation

5. A compression-based entropy estimation method enabling measurement without explicit prob-
abilistic models

6. Analysis demonstrating quantitative tradeoffs between confidentiality and resource costs

7. A case study showing confidentiality improvements from 59% to 85% efficiency with moderate
overhead

The remainder of this paper is organized as follows. Section 2 surveys related work. Sec-
tion 3 formalizes the encrypted search model. Sections 4–7 develop the entropy-based confidentiality
framework. Section 8 presents techniques for improving confidentiality. Section 9 demonstrates the
framework through a case study. Section 10 concludes.

2 Related Work

2.1 Encrypted Search Systems

The problem of searching over encrypted data while preserving confidentiality has been studied ex-
tensively since the seminal work of Song et al.[17], who introduced practical techniques for searching
on encrypted data using cryptographic primitives. Goh[6] introduced the concept of secure indexes
using Bloom filters to enable efficient searching over encrypted document collections.

Curtmola et al.[4] provided improved security definitions for searchable symmetric encryption
and presented efficient constructions achieving stronger security guarantees. Their work established
formal security models that have become standard in the field. Cash et al.[1] extended this work
to support Boolean queries at scale, while Kamara et al.[12] addressed the challenge of dynamic
encrypted search systems where documents can be added or removed.

5

2.2 Attacks on Encrypted Search

Despite strong cryptographic protections, encrypted search systems are vulnerable to attacks that
exploit observable patterns in encrypted queries and access patterns. Islam et al.[9] demonstrated
that access pattern leakage can enable adversaries to recover significant information about plaintext
queries and documents. Cash et al.[2] formalized leakage-abuse attacks, showing how adversaries
can exploit leaked information to reconstruct queries.

Pouliot and Wright[14] demonstrated inference attacks on practical encrypted search deploy-
ments, while Grubbs et al.[8] showed that even volume leakage from range queries can enable
database reconstruction. These attacks motivate the need for principled approaches to understand-
ing and quantifying information leakage in encrypted search systems.

2.3 Information-Theoretic Approaches

Shannon’s foundational work on information theory[15, 16] established the mathematical frame-
work for measuring information and uncertainty. His analysis of secrecy systems demonstrated the
importance of entropy in cryptographic security. The principle of maximum entropy, developed by
Jaynes[10, 11], provides a rational basis for selecting probability distributions under constraints.

Our work applies these information-theoretic principles to analyze encrypted search systems. By
measuring the entropy of observable encrypted search activities and comparing it to the maximum
entropy possible under system constraints, we provide a quantitative measure of confidentiality that
guides the design of countermeasures.

2.4 Oblivious Computation

Oblivious RAM[7, 18] provides techniques for hiding access patterns to memory by obfuscating read
and write operations. While ORAM achieves strong security guarantees, it introduces significant
computational overhead. Our approach shares the goal of hiding patterns in observable activities
but focuses specifically on encrypted search and leverages information-theoretic measures to balance
confidentiality against performance costs.

2.5 Anonymity and Mix Networks

Mix networks[3] and onion routing systems like Tor[5] provide anonymity by obscuring the rela-
tionship between senders and receivers of messages. These techniques complement our approach by
addressing the challenge of hiding search agent identities. Our entropy maximization framework can
incorporate mix network properties as one component of a comprehensive confidentiality strategy.

3 Encrypted search model

An encrypted search system consists of three stages:

1. Query generation: Search agents generate plaintext queries representing confidential infor-
mation needs. These queries traverse a trusted channel to an obfuscator.

2. Obfuscation: The obfuscator transforms plaintext queries into hidden queries, which traverse
an untrusted channel to the encrypted search provider.

3. Encrypted retrieval: The provider obliviously maps each hidden query to a set of secure
indexes representing confidential objects that satisfy the query.

6

We now formalize each component of this system. A set is an unordered collection of distinct
elements. A set of particular interest is given by the following definition.

Definition 3.1. The finite set of all bit strings of length n is denoted by

Bn = {b : b ∈ {0, 1}n} (3.1)

with a cardinality given by
|Bn| = 2n . (3.2)

The set of bit strings of length n may be put in one-to-one correspondence with any set having
2n or more elements.

The bit length of an object x is denoted by

BL(x) , (3.3)

e.g., the bit length of a bit string x ∈ Bn is BL(x) = n. The countably infinite set of all bit strings
of any length is denoted by

B = {b : b ∈ {0, 1}∗} , (3.4)

where ∗ denotes any non-negative integer.

Definition 3.2 (Confidential object). A confidential object, like a document, is an object that only
an authorized set of search agents should be able to comprehend.

The objective of an encrypted search system is to satisfy the information needs, as represented
by queries, of authorized search agents by retrieving a set of relevant documents from the document
store.

Definition 3.3 (Secure index). A queryable representation of a confidential object is denoted a
secure index if it meets the following conditions:

1. If it has a bit length n, then it obtains (at least approximately) the maximum entropy. That
is, it is incompressible.

2. An estimator of the cardinality of a bag-of-words secure index has an average entropy c2 per
element.

3. A hidden query applied to a secure index only reveals information about the set of trapdoors in
the hidden query. If the document model is a bag-of-words, then it only reveals an approximate
membership with a false positive rate ε. If the document model is more general, it reveals only
the information necessary to determine relevance.

By the definition above, a secure index may be obliviously queried by the encrypted search
provider on behalf of authorized search agents.

The requirement that a secure index be incompressible (condition 1) is crucial for preventing
information leakage through structural patterns. Various cryptographic constructions achieve this
property through different mechanisms. Bloom filters[6] provide space-efficient approximate set
membership testing with tunable false positive rates, while maintaining high entropy through their
bit array representation. Perfect hash functions and other approximate map constructions[21, 20]
extend this concept to support richer query semantics. The entropy of a secure index can be
measured empirically through lossless compression algorithms: a well-obfuscated secure index should
exhibit compression ratios near 1.0, indicating that it approaches maximum entropy for its bit length.

7

The choice of secure index construction involves tradeoffs between space efficiency, query ex-
pressiveness, and information leakage. More sophisticated constructions supporting phrase queries,
proximity search, or ranked retrieval necessarily reveal additional structural information about the
underlying document. Our entropy-based framework applies uniformly across these constructions:
regardless of the specific cryptographic technique employed, a secure index achieves better confi-
dentiality when its observable representation has higher entropy relative to the maximum possible
entropy given the system constraints.

An encrypted search system may support many different kinds of queries. One of the simplest
kinds of queries is a bag-of-words; that is, a search agent represents an information need with a
set of relevant search keys. The bag-of-words query model may be a crude approximation of an
information need but it is common in information retrieval and for simplicity we make the following
assumption.

Assumption 3.1. The query model is a bag-of-words.

A query submitted to a encrypted search system should only be understood by the search agent
that generated the query.

Definition 3.4 (Hidden query). A hidden query represents a confidential information need of an
authorized search agent, where the query is suppose to be incomprehensible to everyone except the
indicated search agent.

Before we define how a plaintext bag-of-words query is transformed into a hidden query, we need
to define the trapdoor function.

Definition 3.5 (Trapdoor). Given a secret s ∈ B and a word x ∈ B, a trapdoor of x is a one-way
transformation to a word y ∈ Bm as given by

y ← h(x++s) , (3.5)

where h : B 7→ Bm is a one-way function and ++ is the concatenation operator.

By one-way, we mean that given a word y, finding an x such that

y = h(x)

is not tractable. The one-way property of the transformation is the reason we call it a trapdoor
function.

Definition 3.6. A random oracle is an idealized cryptographic primitive that maps inputs to uni-
formly random outputs in an unpredictable manner.

Assumption 3.2. The one-way function h : B 7→ Bm approximates1 a random oracle.

If a collision between plaintext words x and y were to occur, they would be aliased–i.e., indistinguishable–
in the encrypted search system. We make the following simplifying assumption about the trapdoor
function.

Assumption 3.3. The codomain of h, the set of bit strings of length m, is sufficiently large such
that collisions between words that represent information needs are negligible and may be ignored.

1Generally, h is a cryptographic hash function.

8

The function that transforms a plaintext bag-of-words into a trapdoor bag-of-words is given by
the following definition.

Definition 3.7 (hidden query cryptographic protocol). The cryptographic protocol that transforms
a plaintext query x into a hidden query x̌ is given by

x̌← hidden_query_generator(x) (3.6)

where
hidden_query_generator : [bag-of-words] 7→ B∗

m . (3.7)

uses the trapdoor function given by Definition 3.5.

If the policy is a substitution cipher as given by Algorithm 1, then plaintext words have 1 or
more possible trapdoors that are uniformly sampled from. In a simple substitution cipher, where
each word maps to a single trapdoor, the substitution policy is a constant given by

substitutions(x) = 1 (3.8)

for all words x ∈ B.

Algorithm 1: Cryptographic substitution cipher policy for mapping plaintext queries to
hidden queries

params:
1. s ∈ B is the secret.
2. substitutions : B 7→ Bm is the substitution policy, where m is the bit length of trapdoors.

input : A bag-of-words plaintext query x.
output : A corresponding bag-of-words hidden query x̌.

1 function hidden_query_generator(x)
2 x̌← ∅;
3 for x ∈ x do
4 p← substitutions(x);
5 sample k from DU(1, p);
6 s′ ← s;
7 for j ← 1 to p do

// Since h approximates a random oracle, prepending the single bit
value “1” is sufficient to generate another uncorrelated
trapdoor.

8 s′ ← 1++s′;
9 x̌← h(x++s′);

10 x̌← x̌ ∪ {x̌};
11 end
12 end
13 return x̌;

Definition 3.8. The secure index document model is an approximate map[21, 20] with a false
positive rate ε where the keys are searchable words in a corresponding confidential object and the
values represent information about the word, such as its multiplicity.

9

Algorithm 2: Cryptographic noise policy decorator for hidden queries
params:

1. s ∈ B is the secret.
2. nnoise is the number of artificial trapdoors to inject per query.

input : A bag-of-words hidden query x̌.
output : A perturbed bag-of-words hidden query x̌′ with artificial trapdoors.

1 function hidden_query_noise_decorator(x̌)
2 x̌′ ← x̌;
3 for j ← 1 to nnoise do
4 sample r uniformly from B;
5 x̌noise ← h(r++s);
6 x̌′ ← x̌′ ∪ {x̌noise};
7 end
8 return x̌′;

In a bag-of-words document model, the value is whether a word exists in a document. In this
case, a special-case of the approximate map, the approximate set, is used.[22, 19]

The function that transforms a plaintext document into a secure index is given by the following
definition.

Definition 3.9 (Secure index construction cryptographic protocol). The cryptographic protocol that
transforms a plaintext document into a secure index is given by

d′ ← secure_index_maker(d) (3.9)

where
secure_index_maker : [document] 7→ [secure_index] . (3.10)

If each queryable word x has multiple possible substitutions and the document model is a bag-
of-words, then the algorithm given by Algorithm 3 is a candidate for secure index construction. It
relies upon a data structure implementing the approximate set abstract data type.[22, 19]

Algorithm 3 may also be used to support phrase searching by also including the bigrams in a
document D. This is known as a biword model for phrase search[13]. A phrase is assumed to be in
the document if all the bigrams in the phrase are in the approximate set. Note that false positives
on phrases with more than two words occur at a different rate than the false positive rate of the
approximate set. Other variations may also be supported, e.g., fuzzy searches or wildcard searches,
at the cost of increased space and time complexity.

Definition 3.10 (Adversary). The adversary is an untrusted agent that tries to extract confidential
information about encrypted search activities.

Definition 3.11 (Kerckhoffs’s principle). A cryptosystem should be secure even if everything about
the system, except the secret, is known to the adversary. If the secret is compromised, the cryp-
tosystem is compromised.

In our encrypted search model, the secret is a set of well-defined parameterizations.

Assumption 3.4. The adversary knows everything about the system except a well-defined set of
paramterizations.

10

Algorithm 3: Plaintext document to secure index bag-of-words generator
params:
s ∈ B is the secret.
ε is the false positive rate.
substitutions : B 7→ Bm is the substitution policy, where m is the bit length of trapdoors.
input : D is a bag-of-words representing a plaintext document.
output : An approximate set of the trapdoors of the words in D.

1 function secure_index_maker(D)
// D′ temporarily stores the trapdoors of the plaintext words.

2 D′ ← ∅;
3 for x ∈ D do
4 s′ ← s;
5 for j ← 1 to substitutions(x) do
6 x̌(j) ← h(x++s′);
7 D′ ← D′ ∪

{
x̌(j)
}
;

// Since h approximates a random oracle, prepending the single bit
value “1” is sufficient to generate another uncorrelated
trapdoor.

8 s′ ← 1++s′;
9 end

10 end
11 return an approximate set of D′ with a false positive rate ε;

In particular, the hidden queries time series is known (observable) to the adversary.
There are many ways an adversary might gain insight into encrypted search activities, e.g., the

confidential identity of search agents may be exposed through traffic analysis even if onion routing
is used[5].

The secret is given by the following definition.

Assumption 3.5. The set of parameters considered to be the secret is given by the following:

1. A secret key used to generate trapdoors.

There are two primary components in an encrypted search system, the obfuscator and the
encrypted search provider. The obfuscator is given by the following definition.

Definition 3.12 (obfuscator). The obfuscator receives plaintext queries from authorized search
agents, transforms them into hidden queries using some set of cryptographic protocols2, and trans-
mits the hidden queries to the encrypted search provider.3

The obfuscator may reside on a search agent’s host computer or a physically separate computer
that is network accessible. Either way, since the obfuscator receives plaintext queries, it must be
trusted.

Assumption 3.6. The authorized search agents have access to the obfuscator through a secure
communications channel.

2One of which is given by Definition 3.7.
3In practice, the obfuscator may transmit the hidden queries back to the search agents and they may then transmit

the hidden queries directly to the encrypted search provider.

11

By Assumption 3.6, confidential plaintext queries may be securely transported to the obfusca-
tor without being compromised by the adversary. The encrypted search provider is given by the
following definition.

Definition 3.13 (encrypted search provider). The encrypted search provider receives hidden queries
that are the output of the obfuscator and maps them to a set of confidential objects. The mapping
is given by some function

hidden_query_mapper : B∗
m 7→ powerset ({1, . . . , N}) , (3.11)

where B∗
m is the set of hidden queries and d∗ is a set of references to confidential objects.

The encrypted search provider may reside on a search agent’s host computer or a physically
separate computer that is network accessible. Either way, we make the following assumption about
the link between the obfuscator and the encrypted search provider.

Assumption 3.7. The obfuscator communicates with the encrypted search provider through an
untrusted communications channel.

Typically, the network connection between the obfuscator and the encrypted search provider
is trusted (encrypted), and thus the only untrusted element in this link is the encrypted search
provider, e.g., the adversary may have compromised the security of the encrypted search provider
itself.

The adversary may modify the result sets or the hidden queries (such that the search agents
receive false results)4. Strategies (such as redundancy) exist that may make it possible to detect
such modifications, but we make the following assumption.

Assumption 3.8. The search agents receive truthful results to their information needs.

The information that flows across the untrusted channel is given by the following definition.

Definition 3.14 (hidden query stream). The hidden queries and result sets flowing across the
untrusted communications channel is an ordered sequence of tuples. The kth tuple is given by〈

ťk, ǎjk , x̌k, ďk

〉
, (3.12)

where

ťj is a time stamp of the kth hidden query,

ǎjk is the identity5 of the search agent submitting the kth hidden query,

x̌k is the kth hidden query corresponding to plaintext query, and

ďk is the result set of confidential objects satisfying the information need of the query.

The time stamps observed in a stream of hidden queries provides a partial ordering such that if
time stamp tj of the jth hidden query is earlier in time than time stamp tk of the kth query, then
tj comes before tk in the ordered sequence of tuples.

Two search agents interacting with an encrypted search provider is given by the following ex-
ample.

4This capability could theoretically be employed by the adversary to decrease the entropy of encrypted search
activities.

5For example, the IP address of the search agent.

12

Example 1 In Figure 1, we depict the following situation. There are two search
agents, denoted by SA1 and SA2, generating plaintext queries expressing some informa-
tion need that is to be met by the encrypted search provider.

search agent a1 submits two plaintext queries, x1 at time t1 and x3 at time t3. These
queries are transformed by the obfuscator respectively into the hidden queries x̌1 and x̌2

which are then sent to the encrypted search provider over the untrusted communications
channel. Similiarly, search agent a2 submits a plaintext queries x2 at time t2 which is
transformed into x̌2 and sent to the encrypted search provider.

The encrypted search provider receives these queries and generates result sets that satisfy
the obfuscated information needs represented by the hidden queries, where ďj satisfies
x̌j for j = 1, 2, 3.

The adversary observes the hidden query and result set streams flowing across the un-
trusted communication channels and attempts to ascertain patterns or regularities that
may compromise confidentaility.

The adversary may be an authorized search agent if it is attempting to compromise the query
privacy of other search agents.

Figure 1: Two search agents submitting a query to the encrypted search system where a simple
substitution cipher is being used.

ESP

SA1

SA2

hidden queries
(untrusted channel)

Obfuscator

queries
(trusted channel)

adversary

(t1, a1,y1) , (t2, a2,y2) , (t3, a1,y3)

(t1, a1,x1) , (t3, a1,x3)

(t2, a2,x2)

result set stream
(untrusted channel)

(a1,d1) , (a2,d2) , (a1,d3)

The system has several characteristics given by the following table.

13

Table 1: The known parameters of the encrypted search system.

param sup description

λ R>0 The mean arrival rate of the plaintext queries in the time series.
µ R>0 The mean number of search keys per query in the plaintext time series.
u Z>0 The maximum number of search keys per query in the plaintext time series.
m Z>0 The number of unique plaintext search keys in the plaintext time series.
N Z>0 The number of unique confidential documents on the ESP.
θ R>0 The mean number of documents in the result sets.6

To transmit the hidden queries across the untrusted channel, some encoding is needed. The
hidden query encoder is given by the following definition.

Definition 3.15. The encoder of the set of trapdoors x̌ consisting of trapdoors is given by

encode : [Y] 7→ B , (3.13)

which produces a uniquely decodable bit string.

The result sets encoder is given by the following definition.

Definition 3.16. The encoder of the set of document identifiers [D] is given by

encode : [D] 7→ B , (3.14)

which produces a uniquely decodable bit string.

Theorem 3.1. The average bit rate of the sum of the hidden query and result set streams is given
by

O (λ(mµ+ θ)) , (3.15)

where λ is the expected query arrival rate.

Proof. The expected bit length of the jth hidden query is given by

E [BL (encode(Yj))] +O(1) . (a)

The constant is the fixed number of bits needed to encode data such as the time stamp of a hidden
query and the identifier of the search agent (such as an IP address) that submitted it. Each trapdoor
is coded by a fixed number of m bits, and there is expected to be µ trapdoors per hidden query.
Thus, the expected bit length of the encoding of Yj is given by

µm+O(1) . (b)

The expected bit length of the jth result set is given by

O(θ) , (c)

where θ is the expected number of documents relevant per hidden query. The sum of Equations b
and c is given by

O(θ) + µm+O(1) . (d)

The number of hidden query arriving per second is given by λ, and thus the total query rate is given
by

λ (O(θ) + µm+O(1)) . (e)

14

The primary interest of the adversary is in extracting information from the stream of hidden
queries going from obfuscator to the encrypted search provider and from the stream of result sets
going from the encrypted search provider to the search agents. For instance, the adversary may
use a known-plaintext attack to map the trapdoors to their plaintext counterparts to ascertain the
confidential information needs of search agents.

In what follows, we provide a theoretical treatment on the information disclosure of the hidden
query and result set streams and explore strategies that increase their entropy by transforming the
streams.

4 Probabilistic model

A probabilistic model is specified by equations involving random variables which make assumptions
about how observable data about the system is generated. In what follows, we describe our model
and observable data.

The probability mass function is given by the following definition.

Definition 4.1. Let X be some discrete random variable. The probability mass function, denoted
by

pX(x) , (4.1)

calculates the probability that X realizes some value x.

If a random variable X has a probability mass function pX(·), we say that

X ∼ pX(·) . (4.2)

The joint probability mass function of X1, . . . ,Xn is given by

pX1,··· ,Xn
(x1, . . . , xn) , (4.3)

which calculates the joint probability that X1 = x1, . . . ,Xn = xn.
The arrival rate is given by the reciprocal of the inter-arrival time. In an observed time series

t1, . . . , tn, the sample mean arrival rate is given by

λ =
n∑n
j=1 tj

. (4.4)

We model the inter-arrival times between successive queries as random variables as given by the
following definition.

Definition 4.2. The inter-arrival time between the (j − 1)-th and the jth query is a continuous
random variable Tj with a support set R>0 and a mean arrival rate λ.

Remark. An estimator of the distribution of the inter-arrival times is provided by time series esti-
mators like exponential smoothing.

Suppose it is known that there are k search agents that may generate the plaintext queries. In
a time series of the queries, the frequency of the search agents may vary. Thus, we may model the
distribution as a discrete random variable as given by the following definition.

Definition 4.3. The search agent responsible for the jth query is a discrete random variable Aj with
a support set given by

{1, 2, 3, . . . , k} . (4.5)

15

The distribution of plaintext queries is given by the following definition.

Definition 4.4. The jth random bag-of-words (set) in the plaintext query time series is denoted by
Xj with a support given by

{X ∈ powerset(K) | 0 < |X| ≤ p} . (4.6)

The process that generates queries may be too complex to model. However, as the famous
statistician George Box observed, “. . . all models are wrong, but some are useful.” The adversary
does not need an accurate model, only a useful model. A very useful model is one which enables
the adversary to map the observed trapdoors to their corresponding plaintext counterparts.

The random tuples in the hidden query and result set streams are given by the following defini-
tion.

Definition 4.5. We denote the random tuple of the jth plaintext query by

Qj =
(
Tj,Aj,Xj

)
, (4.7)

where

Tj is the random inter-arrival time between the (j − 1)-th and jth queries,

Aj is the random search agent of the jth query, and

Xj is the random set of plaintext bag-of-words in the jth query.

4.1 Hidden query and result set streams

By Assumption 3.7, the plaintext random tuples X1, . . . ,Xn are not observable. However, these
random tuples induce an observable hidden query stream.

The inter-arrival times between hidden queries is uncertain and therefore we may model them
as random variables as given by the following definition.

Definition 4.6. The inter-arrival time between the of the (j − 1)-th and the jth hidden query is a
discrete random variable Ťj with a support set given by

{1, 2, 3, . . .} . (4.8)

The mean arrival rate of hidden queries is given by

nE

[
1∑n

j=1 Ťj

]
= λ̌ . (4.9)

The mean arrival rate of hidden queries is not necessarily the same as the mean arrival rate of plain-
text queries since the obfuscator transforms the incoming plaintext queries to obfuscate encrypted
search activities, e.g., it may inject artificial hidden queries at uncertain times and at any desired
rate. Thus, in general, λ̌ ̸= λ.

The search agents generate the legitimate queries. However, the obfuscator may generate ar-
tificial queries by either artificial or legitimate search agents to perturb the hidden query stream.
Regardless, the particular search agent that generated a query in the stream cannot be prede-
termined and thus we may model this uncertainty as a discrete random variable as given by the
following definition.

16

Definition 4.7. The search agent responsible for the jth hidden query is a discrete random variable
Ǎj with a support set given by {

1, 2, 3, . . . , ǩ
}
. (4.10)

Since the obfuscator may generate artificial queries for artificial search agents, ǩ may be larger
than k.

By Assumption 3.2, the trapdoors observed are functions of the random plaintext words in the
bag-of-words query. Thus, the trapdoors are random sets as given by the following definition.

Definition 4.8. The trapdoors in the jth hidden query is a random set given by

X̌j = hidden_query_generator(X) , (4.11)

where X is some random plaintext query7 and X̌j has a support set given by the power set of

{1, 2, 3, . . . , m̌} (4.12)

with a mean cardinality given by

E

 1

n

n∑
j=1

∣∣X̌j

∣∣ = µ̌ . (4.13)

Note that X̌j does not (necessarily) correspond to Xj since the obfuscator transforms the incom-
ing plaintext queries to obfuscate encrypted search activities, e.g., it may inject artificial hidden
queries.

There are N unique confidential objects (and N ′−N obfuscated or artificial objects) for a total
of N ′ objects. The random set X̌j induces a distribution of result sets. Since the result sets are
uncertain we may model them as random result sets as given by the following definition.

Definition 4.9. The kth random result set corresponding to the kth random hidden query is denoted
by Ďk with a support set given by the power set of{

1, 2, 3, . . . , Ň
}

(4.14)

with a mean cardinality given by

E

 1

n

n∑
j=1

∣∣Ďj

∣∣ = θ̌ . (4.15)

Given X̌i = x̌i, Ďi is degenerate since the same hidden query must always map to the same
result set (assuming the confidential database is immutable).

In summary, the random tuples in the hidden query and result set streams are given by the
following definition.

Definition 4.10. We denote the random tuple of the jth hidden query and the corresponding
jth result set by

Q̌j =
〈
Ťj, Ǎj, X̌j, Ďj

〉
, (4.16)

where

Ťj is the random inter-arrival time,
7Potentially artificial random query.

17

Q1, · · · ,Qn Q̌1, · · · , Q̌n
Pr
(
Q1, · · · ,Qn, Q̌1, · · · , Q̌n

)

observable

Figure 2: The probability model, where a sequence of plaintext random queries is transformed into
a sequence of random hidden queries.

Ǎj is the random search agent,

X̌j is the random set of trapdoors, and

Ďj is the random result set corresponding to X̌j.

See Section 4.2 for a description of the joint probability mass function of the random sample
Q̌1, . . . , Q̌n, which is in general not tractable. The entropy of the distribution is a far more tractable
problem and provides a measure of the regularity or predictability that an adversary may extract
from the system by observing the hidden query and result set streams.

4.2 Generative model

Consider the time series
Q1, . . . ,Qn, Q̌1, . . . , Q̌n . (4.17)

The conditional probability that Qn = qn and Q̌n = q̌n given Q<n = q<n and Q̌<n = q̌<n is
given by

Pr
[
Q̌n = q̌n, Q̌n = q̌n |Q<n = q<n, Q̌<n = q̌<n

]
, (4.18)

which is equivalent to

Pr
[
Tn = tn,An = an,Xn = xn, Ťn = ťn, Ǎn = ǎn, X̌n = x̌n, Ďn = ďn | Q̌<n = q̌<n

]
. (4.19)

By the chain rule, this can be rewritten as

Pr
[
Ťn = tn, Ǎn = an, X̌n = x̌n | X̌<n = x̌<n

]
=

Pr
[
Ťn = tn | X̌<n = x̌<n

]
×

Pr
[
Ǎn = an | Ťn = tn, X̌<n = x̌<n

]
×

Pr
[
X̌n = x̌n | Ťn = tn, Ǎn = an, X̌<n = x̌<n

]
.

(4.20)

The plaintext time series of queries induces the hidden query time series. If a simple substitution
cipher is used for the queries and agent identifers and the time stamps are unchanged, then the
distribution of hidden queries is the same as the plaintext time series except with different labels.

18

Algorithm 4: Generative model of a hidden query time series
params:
input :
output : A time series of size n drawn randomly from the induced distribution.

1 function samplern
2 for i← 1 to n do
3 sample ti from Ti |Q<i = q<i;
4 sample ai from Ai |Ti = ti,Q<i = q<i;
5 sample xi from Xi |Ai = ai,Ti = ti,Q<i = q<i;
6 ǎi ← some anonymizer, like a mixnet;
7 ťi ← something that delays sending hidden query up to some limit;
8 x̌i ← hidden_query_generator(xi | parameters);
9 ďi ← hidden_query_mapper(x̌i | parameters);

10 end

5 Entropy and information

Suppose a search agent has some random information need J coming from some countable set J
with a probability mass given by pJ(·). If the adversary could ask “yes” or “no” questions about
the search agent[’s] information need, an expected lower-bound on the number of questions required
to determine the information need j ∈ J is given by

H(J) = −
∑
j∈J

pJ(j) log2 pJ(j) . (5.1)

This is known as the entropy of the random variable J. The entropy measures the amount of
“uncertainty” about what value J realizes. The greater the entropy, the greater the uncertainty
and therefore the greater the number of questions the adversary needs on average to determine the
information need.

For instance, to minimize the number of questions, the adversary could ask the search agent
whether the information need is j(1) = argmaxj∈J pJ(j). This is the information need with prob-
ability pJ

(
j(1)
)
. If not, the adversary can ask the search agent whether the information need is

j(2) = argmaxj∈J\{j(1)} pJ(j). The information need is
The greater the entropy, the more difficult it is to predict the information need of a search agent.

More generally, the greater the entropy, the fewer patterns there are in the activities of an encrypted
search system. In what follows, we provide a more rigorous mathematical treatment on the entropy
of the encrypted search system.

The entropy is given by the following definition.

Definition 5.1 (Entropy). The entropy of the jth random tuple Q̌j is given by

H
(
Q̌j

)
= E

[
log2 pQ̌j

(
Q̌j

)]
, (5.2)

where pQ̌j
(·) is the marginal distribution of Q̌j.

Definition 5.2 (Conditional entropy). The conditional entropy of the jth random tuple Q̌j given
the previous j − 1 random tuples Q̌<j ≡ Q̌1, . . . , Q̌j−1 is given by

H
(
Q̌j | Q̌<j

)
= E

[
log2 pQ̌j | Q̌<j

(
Q̌j | Q̌<j

)]
. (5.3)

19

Definition 5.3 (Joint entropy). The joint entropy of Q̌1, . . . , Q̌n is given by

H(Q̌1, . . . , Q̌n) = H
(
Q̌1

)
+

n∑
j=2

H
(
Q̌j | Q̌<j

)
. (5.4)

The joint entropy is less than (or equal to) the sum of the marginal entropies as given by

H
(
Q̌1, . . . , Q̌n

)
≤

n∑
j=1

H
(
Q̌j

)
. (5.5)

and only obtains equality if Q̌1, . . . , Q̌n are statistically independent. If they are independent and
identically distributed, then the joint entropy is given by

H
(
Q̌1, . . . , Q̌n

)
= nH(Q) . (5.6)

Postulate 5.1 (Optimal compressor). The entropy H
(
Q̌1, . . . , Q̌n

)
is equivalent to the expected

bit length produced by an optimal lossless compressor’s output given the encoding of the random
tuples as given by

H
(
Q̌1, . . . , Q̌n

)
= E

[
BL
(
compress∗

(
encode(Q̌1) ++ · · ·++ encode(Q̌n))

))]
, (5.7)

where ++ is the concatenation operation, encode is an arbitrary encoding of tuples, compress∗ is an
optimal compressor of the sequence, and BL(x) is the bit length of x.

The particular codes chosen by the encoder is irrelevant with respect to the entropy of the
streams8

If Q̌1, . . . , Q̌n are independent and identically distributed, then the joint entropy is given by

H
(
Q̌1, . . . , Q̌n

)
= nE

[
BL
(
compress∗

(
encode

(
Q̌
)))]

. (5.8)

The information conveyed by a message is the reduction in uncertainty. The information is
given by

I(Q≤n | Q̌≤n) = H(Q≤n)−H(Q≤n | Q̌≤n) (5.9)

= H(Q≤n) +H(Q̌≤n)−H(Q≤n, Q̌≤n) . (5.10)

No information is conveyed about the indicated random variables if the hidden queries and plaintext
queries are uncorrelated. However, it is possible the hidden queries are correlated with other factors
not incorporated into the probabilistic model.

Conversely, if the hidden queries obtain maximum entropy, there are no patterns and thus it
is not possible for it to be correlated with any other hypothetical factor. For this reason, optimal
confidentiality is obtained by the maximum entropy distribution.

8An optimal coder is informative about the underlying distribution and thus efficient codes are not necessarily
even sought in the context of encrypted search.

20

5.1 Principle of maximum entropy

Given the constraints of the system, the hidden queries necessarily convey some information about
the plaintext queries. However, the greater the entropy, the fewer regularities and patterns in
the encrypted search system. The maximum entropy given the system constraints is given by the
following theorem.

Theorem 5.1 (Constrained maximum entropy). The maximum entropy of a sequence of random
tuples Q̌1, . . . , Q̌n subject to the constraints of the communications model is given by

H∗(λ, k,N,M, n, p) = n
(
H∗(Ť |λ) +H∗(Ǎ | k) +H∗(X̌ |M,p) +H∗(Ď |N) .

)
(5.11)

Proof.

H∗(λ, k,N,M, n, p) =
n∑

i=1

(
H∗(Ť |λ) +H∗(Ǎ | k) +H∗(X̌ |M,p) +H∗(Ď |N) .

)
(a)

Since H(Q̌j, Q̌k) ≤ H(Q̌j) +H(Q̌k) for any j ̸= k, to maximize entropy, we seek to maximize
the independence without violating any constraints.

The random tuples
(
Ťj, Ǎj, X̌j

)
for j = 1, . . . , n are independently distributed. Also, since we

are interested in the maximum entropy distribution, the random tuples are identically distributed.
Continuing on, the components in the random tuple, Ť, Ǎ, X̌, and Ď are independently dis-

tributed. Thus, the maximum entropy has a form given by

H∗(λ, µ, k,m, n) = n (H∗(T |λ) +H∗(A | k) +H∗(N,X |µ,m)) . (b)

Theorem 5.2. The maximum entropy H∗(Ť |λ) is given by

H∗(Ť |λ) = 1 + ln
1

λ
. (5.12)

Proof. The continuous random variable Ťj generates inter-arrival times for queries. The arrival
rate is specified as λ, and thus E[Ťj] =

1
λ .

The exponential distribution with a mean 1
λ and a support R>0 is the maximum entropy distri-

bution in which these constraints hold,

Ťj ∼ EXP(λ) (a)

for j = 1, . . . , n, which has an entropy

1 + ln
1

λ
. (b)

We assume the inter-arrival times are continuous. To store the inter-arrival times on a computer,
we must quantize them.

Theorem 5.3. The optimal compression for exponentially distributed inter-arrival times with a
precision τ has an expected lower-bound given by

H(Ť |λ, τ) = 1

λτ
log2

1

λτ
+

(
1

λτ
− 1

)
log2

(
1

λτ
− 1

)
(5.13)

which asymptotically obtains

lim
λτ→0

H(Ť |λ, τ) = log2
1

λ
+ log2

1

τ
+ log2 e . (5.14)

21

Proof. Let N(τ) be geometrically distributed with a parameter p = λτ where λ > 0 and τ > 0 is an
interval of time,

N(τ) ∼ GEO(p = λτ) , (a)

As τ → 0, N(τ) converges in distribution to the exponential distribution with an arrival rate λ.
Thus, we may choose a suitably small τ (the smaller, the more accurately we code the inter-

arrival times) and use the entropy of the geoemtric distribution, e.g., for a given τ , the optimal
compressor has a lower bound given by the entropy

H(N(τ)) = −(1− p) log2(1− p)− p log2 p

p
, (b)

where p = λτ . After simplification, the result follows.

Theorem 5.4 (Solution for H∗(Ǎ | k)). The maximum entropy subject to the constraints of the
communications model is given by

H∗(Ǎ |λ) = log2 k . (5.15)

Proof. Assigning a unique integer (label) in the set {1, 2, . . . , k} to each of the k search agents, the
discrete uniform distribution is the maximum entropy distribution,

Ǎ ∼ DU(k) (a)

for j = 1, . . . , n. The probability mass function is given by

pǍ(a | k) =
1

k
1k∈{1,...,k} (b)

with an entropy given by
H(A | k) = log2 k . (c)

Solution for H∗(X̌ |M,p).

Solution for H∗(D |N) The maximum entropy system has a distribution given by the following
corollary.

Corollary 5.4.1. The maximum entropy system has a random tuple distribution given by

(T,A,Y) ∼ pT,A,Y(t, a,y |λ, µ, k,m) = λ(1− λ)t−1 × 1

k
× 1

µ

(
1− 1

µ

)α−1

2−α)m , (5.16)

where µ > 1, 0 < λ < 1, k ≥ 1, and α = dim(y) ≥ 1.

If we generate n tuples from this distribution and losslessly compress the results with an optimal
compressor, it is expected that the bit length of the compressor’s output obtains the lower-bound
given by the maximum entropy.

If the parameters of the maximum entropy H∗
n distribution is not known, then it may be esti-

mated by the following theorem.

22

Theorem 5.5. The maximum likelihood estimator of H∗
n is given by

Ĥ∗
n = H∗

n

(
m̂, k̂, λ̂, µ̂

)
, (5.17)

where m̂ is the maximum likelihood estimator of m given by the number of unique trapdoors in the
sample, the maximum likelihood estimator9 of k is given by

k̂ = max a1, . . . , an , (5.18)

the maximum likelihood estimator of λ is given by

λ̂ = n

[
n∑

i=1

ti

]−1

, (5.19)

and the maximum likelihood estimator of µ is given by

µ̂ =
1

n

n∑
i=1

dim(xi) . (5.20)

Proof. Given the distribution of the maximum entropy, where T is geometrically distributed with
arrival rate λ, the UMVU estimator of λ is given by Equation 5.19.

Continue on in the same fashion for the other random variables.

Using the large sample approximation, the maximum likelihood estimator Ĥ∗
n is normally dis-

tributed as given by

Ĥ∗
n ∼ N

(
nH∗

1,
1

n
Var

[
Ĥ∗

1

])
. (5.21)

We assume a sufficiently large sample of size n is available so that we may assume the variance of
the sampling distribution of Sn is small.

If the entropy of the systemHn is not known, then it may be estimated by the following theorem.

Theorem 5.6. A positive biased estimator of the entropy Hn is given by

Ĥn = BL(compress (concat(encode(q1) , . . . , encode(qn)))) , (5.22)

where qj =
(
t′j , a

′
j ,x

′
j,dj

)
is the ith observed tuple and compress is a near-optimal lossless compres-

sor.

Proof. We have the following corollary.

Corollary 5.6.1. with an asymptotic form given by

H∗
n(m, k, λ, µ) = n

(
log2

µk

λ
+ µ(m+ 1) + const

)
(a)

where const = 2 log2 e and m, k, λ, µ are the system parameters.

By Postulate 5.1, an optimal compressor compress∗ is expected to obtain the lower-bound Hn.
Plugging in a sub-optimal compressor will produce an estimate of this lower-bound. And, since
the compressor is not optimal, it produces estiamtes larger than the true lower bound, i.e., it is a
positive biased estimator.

9The UMVU estimator of k is given by k̄ = n+1
n

k̂.

23

Performance measure The performance measure of an encrypted search system is given by the
following definition.

Definition 5.4. The performance of a encrypted search system with entropy Hn is given by

e(m, k, λ, µ) =
Hn (m, k, λ, µ)

H∗
n(m, k, λ, µ)

. (5.23)

A system that obtains e(·) = 1 is said to disclose minimum information. Conversely, a system
which obtains e(·) = 0 (the degenerate distribution) is said to disclose maximum information.10

If e(m, k, λ, µ) is not known, then it may be estimated by the following statistic.

Corollary 5.6.2. By Equations 5.17 and 5.22, an estimator of the performance measure is given
by

ê =
Ĥn

Ĥ∗
n

. (5.24)

Proof. If the maximum likelihood estimator of a parameter θ is θ̂, by the plugin principle the
maximum likelihood estimator of a parameter g(θ) is given by ĝ = g(θ̂).

A central idea in this paper is that compression is equivalent to probabilistic data modeling since
a good compressor tends to be a good predictor of the data. In fact, many compression algorithms
essentially estimate conditional probability mass functions of the data (so that shorter codes may
be assigned to more probably symbols). Thus, we may delegate the data modeling task to good
compressors of encrypted search activities. The more noise-like the activities are, the larger the
compressed output.

6 Maximum entropy system

In this section, we characterize the maximum entropy distribution for encrypted search systems.
Given system constraints—such as the number of search agents k, vocabulary size m, and query
arrival rate λ—we derive the probability distributions that maximize entropy subject to these con-
straints.

Adversary Model. The adversary observes the hidden query stream across the untrusted chan-
nel, including timestamps, trapdoors, and result sets. We assume a passive adversary who can
record but not inject or modify queries. The adversary may have prior knowledge of system pa-
rameters (e.g., k, m, λ) but not the plaintext queries themselves. A more powerful adversary with
side-channel access or traffic manipulation capabilities may achieve better inference, but analyzing
such adversaries is beyond our current scope.

Theorem 6.1 (Total System Entropy). The total entropy of the hidden query stream over n obser-
vations is given by

H(Q̌1, . . . , Q̌n) =
n∑

j=1

H
(
Q̌j | Q̌<j

)
, (6.1)

which, under the assumption of independent and identically distributed queries, simplifies to

H(Q̌1, . . . , Q̌n) = n · H(Q̌) . (6.2)
10The Shannon information of a system in which e(·) = 0 is 0, but we are measuring this with respect to an

adversary being able to predict what will happen, so my disclose maximum information we mean to suggest that it
is predictable.

24

Proof. The first equality follows directly from the chain rule for joint entropy (Definition 5.4). The
simplification under i.i.d. assumptions follows because H(Q̌j | Q̌<j) = H(Q̌j) = H(Q̌) when tuples
are independent.

The probability model with maximum entropy is given by the following theorem.

Theorem 6.2. The distribution of the k search agents identities in the hidden query time series
are independently and uniformly distributed,

Aj ∼ DU(k) . (6.3)

Proof. We assume that the adversary knows there are k unique search agents.

For a maximum entropy system, the unary coder is optimal if the inter-arrival times are geo-
metrically distributed as

Tj ∼ GEO

(
λ =

1

2

)
, (6.4)

the unary coder is optimal if the number of trapdoors per hidden query is geometrically distributed
as

Nj ∼ GEO(µ = 2) , (6.5)

and m bits per trapdoor is the optimal coder if the occurrences of trapdoors are uniformly distributed
as

Yj ∼ DU(0, 2m − 1) (6.6)

for j = 1, . . . , n.
Consider a practical system with the following parameters:

1. The query arrival rate λ′ = 1
2 .

2. The mean number of words per query is µ′.

3. There are k′ unique search agents.

4. X′
j is the random vector of trapdoors in which each component has m′ possibilities with

replacement,

5. Wj is the random dimension of the random vector Dj with a mean θ, and

6. Dj is the random vector of results corresponding to Yj in which each component has N
possibilities without replacement.

Table 2 is the optimal coder if the occurrences of search agents are uniformly distributed as

Aj ∼ DU({a1, a2, . . . , ak}) , (6.7)

the unary coder is optimal if arrival rates are geometrically distributed as

Tj ∼ GEO

(
λ =

1

2

)
, (6.8)

the unary coder is optimal if the number of trapdoors per hidden query is geometrically distributed
as

Nj ∼ GEO(µ = 2) , (6.9)

25

and m bits per trapdoor is the optimal coder if the occurrences of trapdoors are uniformly distributed
as

Yj ∼ DU(0, 2m − 1) (6.10)

for j = 1, . . . , n.
Encoding the hidden queries and result sets for transmission e.g., the unary encoder given by

Table 3, each trapdoor y ∈ y is encoded by a bit string of fixed-length m, and a is encoded.

Theorem 6.3. The expected optimally compressed bit length of a hidden query is given by

ℓ =
1

λ
+ p+ µ(1 +m) . (6.11)

Proof. The expected bit length is given by the expectation of the bit length of the encoder on a
random tuple as given by

ℓ = E [BL(encode(Tj,Aj,Xj)] . (a)

We may look at how each of these random variables are coded separately.
The time stamp is coded by the unary coder given by Table 3, where an integer n > 0 has a bit

length n. Thus, the expected bit length is given by

E[Tj] =
1

λ
, (b)

where the mean inter-arrival time is given by the reciprocal of the arrival rate λ, which is a
characteristic of the encrypted search system.

The search agents are coded by fixed-length bit strings of size p. Thus, the expected bit length
of the code for a search agent is p.

The number of trapdoors dim(Yj) is coded by the unary coder given by Table 3, where an integer
n > 0 has a bit length n. Thus, the expected bit length is given by

E[Nj] = µ , (c)

where µ is a characteristic of the encrypted search system.
The trapdoors are coded by bit strings of fixed-length m and there are expected to be µ trapdoors

per hidden query, thus the expected bit length of y is given by

µm . (d)

Concatenating these codes together produces an encoding with an expected bit length given by

1

λ
+ p+ µ(1 +m) . (e)

7 Maximum Entropy Under Constraints

In this section, we derive the maximum entropy distribution for encrypted search activities subject
to realistic system constraints. The maximum entropy principle, formalized by Jaynes[10], states
that subject to precisely stated prior information, the probability distribution that best represents
the current state of knowledge is the one with the largest entropy.

26

Table 2: Code for search agents

Search agent Code
SA1 0 0 0 02
SA2 0 0 1 02
SA3 0 1 0 02
SA4 0 1 1 02
SA5 1 0 0 02
SA6 1 0 1 02

Table 3: Unary code for inter-arrival time

τ Code
1 12
2 0 12
3 0 0 12
4 0 0 0 12
5 0 0 0 0 12
6 0 0 0 0 0 12

...

7.1 System Constraints

An encrypted search system operates under the following constraints, which we formalize as expec-
tations or support restrictions on the probability distributions:

1. Query arrival rate: The mean number of queries per unit time is λ.

2. Number of search agents: There are k distinct search agents.

3. Query size: The mean number of trapdoors per hidden query is µ.

4. Trapdoor vocabulary: There are m possible distinct trapdoors.

5. Document collection: There are N distinct documents.

6. Result set size: The mean number of documents returned per query is θ.

These constraints reflect observable or known properties of the system that cannot be hidden
without fundamentally changing the system’s functionality or violating resource constraints.

7.2 Maximum Entropy for Inter-Arrival Times

The inter-arrival time between consecutive queries is constrained by the arrival rate λ.

Theorem 7.1 (Maximum entropy for inter-arrival times). Subject to the constraint that E[Ť] = 1/λ,
the distribution that maximizes entropy is the exponential distribution:

Ť ∼ EXP(λ) (7.1)

with entropy

H∗(Ť) = 1 + ln
1

λ
. (7.2)

27

Proof. Among continuous distributions on R>0 with a fixed mean 1/λ, the exponential distribution
maximizes differential entropy. This follows from the calculus of variations applied to the entropy
functional subject to the mean constraint. The exponential distribution has probability density
function

fŤ(t) = λe−λt (a)

and differential entropy

H(Ť) =
∫ ∞

0
− fŤ(t) ln fŤ(t) dt = 1 + ln

1

λ
. (b)

7.3 Maximum Entropy for Search Agent Identities

The search agent identity for each query is constrained by the total number of agents k.

Theorem 7.2 (Maximum entropy for search agent identities). Subject to the constraint that there
are k search agents, the distribution that maximizes entropy is the discrete uniform distribution:

Ǎ ∼ DU(1, k) (7.3)

with entropy
H∗(Ǎ) = log2 k . (7.4)

Proof. Among discrete distributions on a finite support of size k, the uniform distribution maximizes
entropy. The uniform distribution has probability mass function

pǍ(a) =
1

k
for a ∈ {1, 2, . . . , k} (a)

and entropy

H(Ǎ) =
k∑

a=1

−1

k
log2

1

k
= log2 k . (b)

7.4 Maximum Entropy for Hidden Query Cardinality

The cardinality of a hidden query (number of trapdoors) is constrained by the mean µ and typically
by a maximum value u.

Theorem 7.3 (Maximum entropy for query cardinality). Subject to the constraint that E[Ntrap] = µ
where Ntrap ∈ {1, 2, . . . , u}, an approximate maximum entropy distribution is the geometric distri-
bution (when u is large):

Ntrap ∼ GEO(p) (7.5)

where p = 1/µ, with entropy

H∗(Ntrap) =
−(1− p) log2(1− p)− p log2 p

p
. (7.6)

Proof. The geometric distribution maximizes entropy among discrete distributions on positive inte-
gers with a given mean. For p = 1/µ, the geometric distribution has mean µ and probability mass
function

pN(n) = p(1− p)n−1 for n ≥ 1 . (a)

When the maximum value u is large relative to µ, the truncation has negligible effect on the
entropy.

28

7.5 Maximum Entropy for Trapdoor Selection

The trapdoors within a hidden query are drawn from a vocabulary of size m.

Theorem 7.4 (Maximum entropy for trapdoor selection). Subject to no constraints beyond the
vocabulary size m, the distribution that maximizes entropy for each trapdoor is the discrete uniform
distribution:

Yi ∼ DU(1,m) (7.7)

with entropy per trapdoor
H∗(Yi) = log2m. (7.8)

Proof. Without additional constraints on the relative frequencies of trapdoors, the uniform distribu-
tion over the vocabulary maximizes entropy. This gives entropy log2m per trapdoor selection.

7.6 Maximum Entropy for Result Sets

The result sets are constrained by the document collection size N and mean result set size θ.

Theorem 7.5 (Maximum entropy for result set cardinality). Subject to the constraint that E[Nresults] =
θ where Nresults ∈ {0, 1, . . . , N}, the approximate maximum entropy distribution (for large N) is ge-
ometric or Poisson-like.

7.7 Joint Maximum Entropy

Combining these results, we obtain the maximum entropy for the complete system.

Theorem 7.6 (Joint maximum entropy). Under the assumption of independence (which maximizes
joint entropy), the maximum entropy for n query tuples is:

H∗
n = n

[
H∗(Ť) +H∗(Ǎ) +H∗(Ntrap)

+ E[Ntrap] · H∗(Y) +H∗(Nresults)

+ E[Nresults] · log2N
]
.

(7.9)

Proof. Since entropy is additive for independent random variables, and we assume each query tuple
is independent and identically distributed:

H(Q̌1, . . . , Q̌n) =
n∑

i=1

H(Q̌i) = n · H(Q̌) . (a)

Within each tuple, assuming independence of components:

H(Q̌) = H(Ť) +H(Ǎ) +H(X̌) +H(Ď) . (b)

The entropy of the hidden query bag depends on both the cardinality and the trapdoor selections:

H(X̌) = H(Ntrap) + E[Ntrap] · H(Y) . (c)

Similarly for result sets.

29

7.8 Minimum Mutual Information

The minimum mutual information between plaintext queries Q1, . . . ,Qn and hidden queries Q̌1, . . . , Q̌n

is achieved when the hidden queries realize the maximum entropy distribution.

Corollary 7.6.1 (Minimum mutual information). The minimum mutual information is:

Imin(Q1:n; Q̌1:n) = H(Q1:n) +H∗
n−Hmax(Q1:n, Q̌1:n) (7.10)

where Hmax represents the maximum possible joint entropy. When the system achieves maximum
entropy, the mutual information equals the inherent correlation required by system functionality.

This provides a lower bound on information leakage determined by the fundamental requirements
of the encrypted search system.

8 Increasing the entropy of the system

Assuming that the confidential collection of documents is immutable, a given hidden query always
maps to the same result set. That is to say, given a hidden query, the corresponding random result
set is degenerate. Consquently, the entropy of the joint distribution of hidden queries and result
sets is just the entropy of either distribution,

H(X̌i, Ďi) = H(X̌i) = H(Ďi) . (8.1)

Thus, the only way to increase the entropy of the result sets is to increase the entropy of the hidden
queries. We can thus focus on finding ways to increase the entropy of the hidden queries.

Note that conditional probability distribution of H(Ďi | X̌i is necessarily degenerate since a
particular hidden query must always map to the same result set. However, X̌i | Ďi is not degenerate
since many hidden queries may map to the same result set.

Generally, the hidden query stream does not obtain an efficiency of 1. Thus, we propose to
perturb the stream to increase the entropy. In this section, we cover general strategies for increasing
the entropy at some quantifiable cost.11

The general approach is to interrupt any regularities or patterns in the original stream with
unpredictable noise, which has the effect of increasing the entropy but decreasing some other per-
formance measure, like the bandwidth requirements of encrypted search activities or the space
complexity of the secure indexes.

8.1 Multiple secure indexes per document

Ideally, every document in the document store will have an equal probability of being referenced
in the stream of result sets. However, this is unlikely since some documents are expected to be
generally more relevant to the information needs of the search agents.

Similar to homophonic encryption for trapdoors, a document should be given multiple secure
index representations (and more representations in the document store) proportional to the recip-
rocal of its relative frequency in the stream of result sets. However, there are a few problems with
this approach:

1. The relative frequency is probably not known a priori.
11In general, this is a non-linear optimization problem where we wish to maximize some function of the entropy

and other performance measures.

30

2. This increases both the space complexity and time complexity of the encrypted search system
since more objects must be stored and queried.

For each document, construct multiple secure indexes in which each secure index for the given
document will have a different representation because they will use different document identifiers12

and different salts for their trapdoors.
This will improve query privacy in a way similiar to homophic encryption. However, homophonic

encryption more efficiently serves this purpose. The primary advantage to having multiple secure
indexes per document is that it enables the same plaintext query to return a set of logically equivalent
results. This obscures a user’s search patterns, e.g., different users with similar search patterns may
sample the salts differently to make their search patterns appear dissimilar.

Example 2 Let a document A read “Hello world!”. Let us represent document A with
N = 3 secure indexes, denoted by A1, A2, and A3. Then, in the biword model, Ai’s
trapdoors may be generated from the set given by

Ai ← make_secure_index ({(hello + salti) , (world + salti) , (hello world + salti)} |β) .
(8.2)

This method increases the space and time complexities of encrypted search, e.g., the size of the
secure index database grows linearly with respect to N .

8.2 Artificial secure indexes

An extension of multiple secure indexes per document is the automatic inclusion of artificial secure
indexes. These may be automatically generated from some language model (e.g., trigram language
model) such that they are expected to be relevant to an appropriate percentage of queries.

Artificial secure indexes make it more difficult for an adversary to determine which documents
retrieved in response to a hidden query are of actual interest while the user who submitted the
search can instantly filter out the fake results. For example, the trapdoor of a artificial secure index
document identifier tests positively as a member of the artificial document class.

8.3 Homophonic encryption

We map the accuracy of the adversary with respect to a sample size for various efficiencies in the
following analysis. The greater the efficiency (or entropy), the less accurate the mapping is expected
to be. At one extreme, we have an efficiency of 0 (minimum entropy) in which 100% of the traffic
is successfully mapped after viewing a sample of size 1 and the other extreme we have an efficiency
of 1 (maximum entropy) where the accuracy is given by pure random chance and is not correlated
with sample size.

Homophonic encryption may be employed to flatten the distribution of trapdoors by giving each
plaintext word one or more trapdoors signatures.

By analyzing queries, a reasonable homophonic code can be devised. However, such trapdoors
must be relevant to a corresponding set of secure indexes to facilitate encrypted search. Thus, the
more substitutions, the larger the secure indexes. If the space requirements are too demanding to
create a completely flat marginal distribution, then we can settle on making the distribution more
flat.

12An automated method for generating unique document identifiers may be accomplished by encrypting, using an
invertible encryption scheme, the plaintext document reference with different salts.

31

Figure 3: Accuracy vs sample size where N = 1000
for several different entropies

1 10 100 1,000 10,000 100,000

0

0.2

0.4

0.6

0.8

1

sample size n

ac
cu

ra
cy

r

e(0, N) = 1.00

e
(
1
3 , N

)
= 0.99

e
(
2
3 , N

)
= 0.93

e(1, N) = 0.80

e(2, N) = 0.34

e(4, N) = 0.07

e(∞, N) = 0.00

Figure 4: Testing

5 10 15 20

0

0.1

0.2

0.3

k

p
K
(k
,s

=
1,
N

=
20

)

5 10 15 20

0

0.1

0.2

0.3

k

32

Flattening the marginal distribution does not prevent adversaries from learning mappings since
random plain-text words Tj and Tk are not necessarily statistically independent and, for instance,
may still have a non-uniform conditional distribution

Tj |Tk ∼ pTj |Tk
(·) . (8.3)

Algorithm 5: Homophonic substitution cipher
params: b, maximize the marginal entropy of the distribution of trapdoors up to the b-th

ranked word.
input : A plaintext word x.
output : A trapdoor x̌ of plaintext word x;

1 function substitutions(x)
// Retrieve the b-th ranked word and compute its relative frequency.

2 β ← pX
(
Rank−1(b)

)
;

3 m← 1;
// If the rank of x is less than b, we must provide more than 1 possible

substitution such that the first b words are (approximately) uniformly
distributed.

4 if Rank(x) < b then
5 m←

⌊
pX(x)

β + 1
2

⌋
;

6 end
7 return m;

8.4 Query aggregation

Instead of submitting a single query consisting of k search keys, we can reduce it to y queries where
the jth query has kj search keys for j = 1, . . . , y such that k1 + · · · + ky = k and then apply the
set-intersection operation on the y result sets on a trusted machine, such as the search agent’s host
computer rather than the untrusted encrypted search provider.

Remark. A query model that includes the full set-theoretic model[13] may reveal significantly more
information about a search agent’s information need. Thus, if a full set-theoretic model is desired,
a strong case can be made that it should be implemented using a variation of query aggregation,
where set-theoretic operations (with possibly the exception of set-intersection) are applied to the
result sets on a trusted machine rather than the untrusted encrypted search provider.

8.5 Artificial trapdoors

The effectiveness of artificial trapdoors depends critically on the encrypted search provider’s rank-
ing mechanism. In boolean search systems where all query terms must be present for document
retrieval, artificial trapdoors will cause no matching documents to be returned, making this tech-
nique ineffective. However, for rank-ordered retrieval systems using scoring functions such as BM25
or TF-IDF, artificial trapdoors integrate seamlessly with authentic trapdoors. In such systems,
artificial trapdoors affect result sets only when: (1) they trigger false positives in secure indexes due
to the approximate nature of structures like Bloom filters, or (2) they coincidentally collide with
authentic trapdoors due to the finite trapdoor space.

33

The probability of collision between artificial and authentic trapdoors is governed by the birthday
paradox. With m′ authentic trapdoors and m′′ artificial trapdoors drawn uniformly from a space of
size 2l, the expected number of collisions is approximately m′·m′′

2l
. For typical systems with l ≥ 128

bits, collision probability remains negligible even with thousands of artificial trapdoors.
Suppose that each query has some random number L of artificial trapdoors, where

L ∼ pL(· |µL) (8.4)

such that
E[L] = µL . (8.5)

Let the random variable corresponding to the artificial trapdoor be given by

Y ∼ pY(· |mY) , (8.6)

where mY is the number of unique artificial trapdoors.
The maximum entropy of the joint distribution of L and Y is given by the following theorem.

Theorem 8.1.
H∗(L,Y) = H∗(L |µL,Y) (8.7)

Suppose we have l bits per trapdoor, then at maximum we may generate m′′ = 2l−m′ artificial
trapdoors, where m′ are the unique number of bit patterns corresponding to authentic trapdoors.

Letting M and T′
j for all j be independent, then the mean number of authentic and artificial

trapdoors per query is given by
µ′′ = µ′ + µ′

L . (8.8)

If we randomize the order of the trapdoors in the hidden queries and let µ′
L → ∞, then the

efficiency of the entire encrypted search system will converge to

e(µ′′) =
Hn(N,Y |µ′′)

nH∗(N,Y |µ′′)
. (8.9)

Assume the adversary has a model of the hidden query stream using known-plaintext attacks.
Perturbing the hidden query stream by adding noise to it may counter known-plaintext attacks.
Alternatively, assume that the adversary knows the secret and thus may use a dictionary attack to
decipher the trapdoors. Then, adding noise may in some cases obfuscate what a search agent is
actually interested in.

To mitigate such information leaks, in general we can look to oblivious RAM for inspiration.
oblivious RAM may naively be thought of in the following way: to prevent meaningful statistics
from being gathered about a user’s activities, whenever an action–a read or write–is performed,
include other randomly chosen actions to obscure the user’s actual interests or activities.

8.6 Artificial hidden queries

Unlike artificial trapdoors which may alter result sets through collisions or false positives, artificial
queries are designed to be distinguishable by the search agent while appearing indistinguishable to
the adversary. The search agent can filter out artificial queries from result sets using cryptographic
tags or sequence numbers, ensuring that authentic queries receive unmodified results. This approach
trades space complexity for time and bandwidth: instead of expanding the trapdoor space through
homophonic encryption (Section 9.3), we expand the temporal query stream.

34

The choice of query representation (unigrams, bigrams, trigrams, or longer n-grams) significantly
impacts the entropy-confidentiality tradeoff. Unigram queries provide a vocabulary of size |V |,
yielding at most log2 |V | bits of entropy per trapdoor. Bigram queries expand the space to |V |2
possibilities, increasing per-trapdoor entropy to 2 log2 |V | bits at the cost of larger secure indexes.
Position-sensitive representations like skip-grams or phrase queries further expand the trapdoor
space while supporting richer search semantics.

To increase the entropy of the hidden queries without the space complexity costs associated with
homophonic encryption (see Section 9.3) but rather with a time complexity and transmission rate
cost, we may inject artificial queries into the hidden query stream.

To increase the entropy, the artificial queries should be injected into the stream to make the
hidden query stream less correlated.

Example 3 Consider the authentic hidden query stream given by

(t1, aj1 ,y1), (t2, aj1 ,y2), (t3, aj1 ,y3) . (8.10)

There may be patterns in this sequence, such as autocorrelations between y1, y2, and
y3. If we inject the artificial queries y′

1 and y′
2 into the stream, resulting in the perturbed

hidden query stream given by

(t1, aj1 ,y1), (t
′
1, ·,y′

1), (t2, aj2 ,y2), (t
′
2, ·,y′

2), (t3, aj3 ,y3) , (8.11)

where t1 ≤ t′1 ≤ t2 ≤ t′2 ≤ t3. The perturbed stream may attenuate13 any regularities
such as auto-correlations.

The entropy of this perturbed stream is maximally increased when the time stamps are geometri-
cally distributed with a mean query rate λ̌ per search agent, the search agent identities are uniformly
distributed between 1 and ǩ, the cardinality of the trapdoor sets are binomially distributed between
1 and m̌ with a mean µ̌, and the trapdoors are uniformly distributed between 1 and m̌.

This technique does not transform authentic hidden queries. However, as λ̌ increases due to
injecting artificial hidden queries, patterns become attenuated. Asymptotically, as λ̌ → ∞, the
distribution of hidden query converges to the maximum entropy distribution. Of course, asymptot-
ically, infinite bandwidth and computational resources are required.

8.6.1 Alternative solution

A potential problem with previous solution of increasing the entropy is that the obfuscator must
inject artificial hidden queries without prompting from the search agent. If this is impractical, then
a less effective solution – one that only increases the entropy of the trapdoors – is for search agents to
(automatically) generate random artificial hidden queries whenever they generate authentic hidden
queries.

To maximize the entropy under these constraints, the artificial hidden queries are generated in
the following ways:

1. The time stamps of the queries are randomized to change the order of the query submissions.14

Thus, if r hidden queries are generated, there are r! possible orderings each of which is equally
probable.

13And therefore increases the entropy.
14The time stamps are approximately the same.

35

2. The random cardinality of each trapdoor set in the artificial hidden queries is binomially
distributed with a mean θ̌ with a maximum value of m̌.

3. Each element of the trapdoor set is uniformly distributed with a support set {1, . . . , m̌}.

4. The random number of artificial queries is geometrically distributed with a mean rate given
by λ̌ with a support set {0, 1, 2, . . .} and thus each authentic hidden query has on average 1−λ̌

λ̌
artificial hidden queries bundled with it.

8.7 Obfuscating search agents

The adversary may observe the time series of hidden queries. By analyzing the network traffic going
to and from the ESP, the adversary may be able to uniquely label the search agents generating the
hidden queries, especially if no precautionary measures are taken to obfuscate this identifying15

information.
A mix network[3] is an overlay network that may obscure the identities of search agents.
An onion network is another type of overlay network...
The maximum uncertainty occurs when there is no identifying information. Consequently, given

that the adversary knows there are k unique search agents, the probability that a particular search
agent is responsible for a particular hidden query is 1/k with an entropy given by log2 k.

A mix network helps, but search agents may have identifying search patterns, i.e., search agent
j may be more likely to generate queries in particular intervals of time. These correlations may be
obfuscated using other methods discussed previously.

8.8 Injecting artificial search agents

To increase the entropy, artificial search agents may be introduced that generate artificial hidden
queries. If there are k authentic search agents and w artificial search agents, then there are k′ = k+w
search agents in total.

If k is known, then the maximum entropy distribution is the same as before, the discrete uniform
distribution over k search agents with an entropy given by H(Ǎ | k) = log2 k. Of course, in practice
the maximum entropy may not be achieved and introducing artificial search agents may increase
the entropy.

However, if k is not known, but k′ is, then k may be modeled as a random variable K with a
support given by {0, 1, . . . , k′}.

The joint distribution of (Ǎ,K) has an entropy given by

H(Ǎ,K) = H(Ǎ |K) +H(K) (8.12)

with a maximum entropy given by
H(Ǎ |K) +H(K) . (8.13)

H(Ǎ |K) + log2 k
′ + log2 k

′ . (8.14)

If pK(k | k′) is degenerate and assigns all the probability to the authentic number of search agents,
then the entropy...

15For instance, IP addresses.

36

8.9 Obfuscating inter-arrival times

If the query arrival rate is λ, then the maximum entropy distribution of inter-arrival times in the
hidden query time series is exponentially distributed with a rate λ, denoted by

Ť ∼ EXP(λ) . (8.15)

We use queuing theory to characterize the query arrival times where we consider the obfuscator
to be the server and the search agents to be the customers.

The arrival times are the times that plaintext queries are received by the obfuscator; when a
query arrives, it is put into the queue and the obfuscator “serves” queries at the head of the queue.

If over an interval of time ∆t the obfuscator receives n queries, then the average inter-arrival
time over that interval of time is simply ∆t/n and the arrival rate is λ = n/∆t. More specifically,
suppose we have n plaintext queries with inter-arrival times t1, . . . , tn. The mean inter-arrival time
is

t̄ =
1

n

n∑
j=1

tj , (8.16)

and therefore the arrival rate is
λ =

1

t̄
. (8.17)

We assume tj follows a probability distribution Tj for j = 1, . . . , n. To reshape the arrival times at
the ESP, the obfuscator may delay sending hidden queries to the ESP. Under the queuing theory
model, the delay may be considered the service time. If the mean service time is µ, then the service
rate is 1/µ. To keep up with the query arrival rate, the service rate must be λ, i.e., µ = 1/λ, which
is equivalent to the mean inter-arrival time.

Theorem 8.2. Suppose we have k search agents with query rates λ1, . . . , λk. If each uses an
obfuscator to transform the inter-arrival times to be exponentially distributed with arrival rates
λ1, . . . , λk, then the collective inter-arrival times is exponentially distributed with an arrival rate
λ1 + · · ·+ λk.

Proof. The sum of k independent Poisson processes with rates λ1, . . . , λk is itself a Poisson process
with rate λ =

∑k
j=1 λj . This is a standard result in stochastic processes.

To verify, let Ni(t) denote the counting process for agent i, where Ni(t) ∼ Poisson(λit). The
superposition N(t) =

∑k
i=1Ni(t) counts arrivals from all agents. By independence and the additive

property of Poisson random variables,

N(t) ∼ Poisson

(
k∑

i=1

λit

)
= Poisson(λt) . (a)

Since a Poisson process has exponentially distributed inter-arrival times, the collective inter-arrival
times follow EXP(λ).

Remark. Intuitively, the no-memory property of the exponential distribution is indicative of its
maximum entropy. However, if we allow the support to be constrained over 0 to 2/λ, then the
uniform distribution obtains the same entropy lnλ such that E[Ť] = 1/λ.

37

Figure 5: Inter-arrival time obfuscation

/2

obfuscatorSA * **

t2t1

*
*

*

ť2

ť1

ESP

38

8.9.1 Estimating search agent arrival rates

The k search agents have query arrival rates λ1, · · · , λk which may be unknown to the adversary.
Assuming the obfuscators transform the inter-arrival times to be exponentially distributed, the
queries collectively arrive with inter-arrival times distributed exponentially with an arrival rate
λ = λ1 + · · ·+ λk, which may be observed by the adversary.

Estimating the arrival rates of the search agents may be revealing. Suppose that the adversary,
by some process, has a sample of inter-arrival times (and corresponding hidden queries and result
sets) along with a set of candidate search agents who were the most likely to have submitted the
query (or, alternatively, it is known that one of the candidates submitted the query).

Then, the arrival rates may be estimated from this sample of the masked search agents.
To describe the output process of the queuing system, the probability distribution for the service

time distribution which governs a “customer’s” service time. We assume the service time distribution
is independent of the number of customers present. This implies, for example, that the server does
not work faster when more customers are present.

The obfsucator could impose a service delay that is exactly the inter-arrival time 1/λj rather
than creating a traffic flow that is exponentially distributed with a mean inter-arrival time 1/λj . In
this case, the adversary can only guess that the average number of queries per day is 24λ queries per
day. However, if the queries are not uniformly distributed, it is not be possible (without introducing
fake queries) to maintain this constant delay, which reveals information about the distribution of
query times.

Queue discipline: FCFS discipline - first come first serve SORS discipline - service in random
order

Suppose we have k search agents, where search agent j has a query rate λj . Then, the total
query rate is λ = λ1 + · · ·+ λk.

If the search agents are unable to effectively anonymize their identities, then a strategy for
confidentiality is to put the queries into a local queue and have the queue emit the queries in such
a way that the inter-arrival times are exponentially distributed with an arrival rate λj .

Of course, if queries come in bursts as is often the case (that is, the inter-arrival times exhibit
large variance), then the queue must delay queries.

may cause significant delays. Additionally, if there are no queries in the queue due to the bu
If the encrypted search system is receiving queries at a rate λ, then on average each of the k

search agent is sending queries at a rate λ/k

9 Case Study: Typical Encrypted Search System

In this section, we analyze a typical encrypted search deployment to demonstrate the practical appli-
cation of our information-theoretic framework. We compare the entropy of actual system behavior
against the maximum entropy possible under system constraints, quantifying the confidentiality gap
and proposing targeted improvements.

9.1 System Parameters

Consider an encrypted search system with the following characteristics, representative of a small
organizational deployment:

39

Table 4: Parameters for case study system

Parameter Value Description

k 10 Number of search agents
m 10,000 Distinct words in query vocabulary
N 1,000 Documents in collection
λ 0.1 Query arrival rate (queries per second)
µ 3 Mean trapdoors per query
u 10 Maximum trapdoors per query
θ 5 Mean documents per result set

9.2 Baseline: Simple Substitution Cipher

We first analyze a simple substitution cipher where each word maps to a single trapdoor with no
additional obfuscation.

9.2.1 Observed Distribution

In a typical query workload following a Zipf distribution, the query word frequencies are highly
skewed:

pX(xi) ∝
1

i
for word ranked i (9.1)

This creates a highly non-uniform trapdoor distribution:

pY(yi) = pX(xi) ∝
1

i
(9.2)

9.2.2 Entropy Calculation

The entropy of the trapdoor distribution under Zipf’s law with parameter s = 1 is:

H(Y) =
m∑
i=1

− 1

iHm,1
log2

1

iHm,1
(9.3)

where Hm,1 =
∑m

i=1 1/i is the m-th harmonic number.
For m = 10,000, we have H10000,1 ≈ 9.787, giving:

H(Y) ≈ 7.83 bits (9.4)

Compare this to the maximum entropy:

H∗(Y) = log2 10,000 = 13.29 bits (9.5)

9.2.3 Efficiency

The ratio of actual to maximum entropy for trapdoors is:

etrap =
7.83

13.29
≈ 0.59 (9.6)

For complete queries with mean 3 trapdoors:

H(X̌) ≈ 3× 7.83 = 23.49 bits (9.7)

40

versus maximum:
H∗(X̌) ≈ 3× 13.29 = 39.87 bits (9.8)

The query efficiency is similarly equery ≈ 0.59.

9.3 Improvement 1: Homophonic Encryption

We apply homophonic encryption to flatten the trapdoor distribution, giving the top b most frequent
words multiple trapdoor representations.

9.3.1 Strategy

For the b = 100 most frequent words, assign trapdoor multiplicities inversely proportional to their
frequency:

ni =

⌈
pX(x1)

pX(xi)

⌉
for i ≤ b (9.9)

This approximately flattens the distribution for the top b words.

9.3.2 Entropy Improvement

After homophonic encryption, the entropy of the top b words becomes approximately:

H(Y1:b) ≈ log2 b = log2 100 = 6.64 bits (9.10)

The overall trapdoor entropy increases to approximately:

H(Y) ≈ 10.2 bits (9.11)

giving efficiency:

etrap ≈
10.2

13.29
≈ 0.77 (9.12)

9.3.3 Cost

The space complexity of secure indexes increases by:

∆S =
b∑

i=1

(ni − 1) ≈ 518 additional trapdoors per document (9.13)

This represents a space overhead factor of approximately 1.52× for the secure indexes.

9.4 Improvement 2: Artificial Queries

We inject artificial queries at a rate λfake = 0.05 queries per second, bringing the total rate to
λtotal = 0.15.

9.4.1 Entropy Improvement

The artificial queries are generated from the maximum entropy distribution, helping to mask pat-
terns in authentic queries. The combined entropy approaches:

H(X̌combined) ≈ 0.67 · 23.49 + 0.33 · 39.87 ≈ 28.86 bits (9.14)

giving efficiency:

equery ≈
28.86

39.87
≈ 0.72 (9.15)

41

9.4.2 Cost

The bandwidth overhead is:
∆B =

λfake

λauthentic
=

0.05

0.10
= 0.50 (9.16)

representing a 50% increase in query traffic.

9.5 Combined Strategy

Applying both homophonic encryption and artificial queries:

Table 5: Comparison of strategies

Configuration Efficiency Space Bandwidth

Baseline 0.59 1.0× 1.0×
Homophonic only 0.77 1.52× 1.0×
Artificial queries only 0.72 1.0× 1.5×
Combined 0.85 1.52× 1.5×

Theoretical maximum 1.00 ∞ ∞

The combined strategy achieves 85% efficiency at the cost of a 52% space increase and 50%
bandwidth increase. This demonstrates the practical tradeoff between confidentiality and resource
consumption.

9.6 Attack Resistance

We evaluate resistance to known-plaintext attacks where an adversary observes a sample of plaintext-
ciphertext query pairs.

9.6.1 Baseline Vulnerability

With the baseline system, after observing 100 queries, an adversary can map approximately 70% of
the trapdoors in subsequent queries due to the highly skewed distribution.

9.6.2 Improved Resistance

With the combined strategy, the same adversary achieves only 35% accuracy after observing 100
queries, and the accuracy grows much more slowly with additional observations. The homophonic
encryption provides multiple valid mappings, while artificial queries introduce noise that masks
authentic patterns.

9.7 Recommendations

Based on this analysis, we recommend:

1. Deploy homophonic encryption with b ≥ 100 for word vocabularies above 1,000 words.

2. Inject artificial queries at 30-50% of authentic query rate if bandwidth permits.

3. Monitor empirical entropy using compression-based estimation to detect degradation.

4. Adjust parameters dynamically based on observed attack attempts or pattern analysis.

42

9.8 Scenario 2: Large-Scale Cloud Deployment

Consider an enterprise cloud deployment with significantly larger scale:

Table 6: Parameters for large-scale cloud scenario

Parameter Value Description

k 1,000 Number of search agents
m 100,000 Vocabulary size
N 50,000 Documents in collection
λ 10 Query rate (queries/second)
µ 4 Mean trapdoors per query

At this scale, the baseline efficiency remains approximately 0.59 due to Zipf distribution char-
acteristics, but absolute entropy increases:

H∗(Y) = log2 100,000 ≈ 16.6 bits . (9.17)

The cost-benefit tradeoffs shift at scale. Homophonic encryption for top-10,000 words requires
substantial storage, making artificial query injection more attractive. With artificial queries at 30%
of authentic rate, efficiency improves to 0.78 with only bandwidth cost. Combining 50-substitution
homophonic encryption for top-1,000 words with 20% artificial queries achieves 0.82 efficiency at
practical cost.

9.9 Scenario 3: High-Sensitivity Medical Records

For systems handling sensitive medical records with strict confidentiality requirements:

Table 7: Parameters for high-sensitivity scenario

Parameter Value Description

k 5 Authorized physicians
m 5,000 Medical terminology
N 10,000 Patient records
λ 0.01 Query rate (sporadic access)

Low query rates make timing analysis particularly dangerous—an adversary can easily correlate
queries with external events (patient visits, lab results). We recommend a minimum efficiency target
of 0.95 and the following countermeasures:

1. Artificial query injection at 10× authentic rate to mask timing patterns

2. Full homophonic coverage for top-500 medical terms (covering 95% of query volume)

3. Mix network for all 5 agents to prevent identity correlation

This combined strategy achieves 0.97 efficiency at cost of 10× bandwidth and 3× storage. For
high-sensitivity applications, this overhead is justified by the substantial confidentiality improve-
ment.

43

9.10 Summary

These case studies demonstrate that significant confidentiality improvements are achievable with
moderate resource costs when guided by information-theoretic analysis. The appropriate counter-
measures depend on scale and sensitivity requirements.

10 Conclusion

We have presented an information-theoretic framework for analyzing and improving the confidential-
ity of encrypted search systems. By measuring entropy of observable encrypted search activities and
comparing it to the maximum entropy possible under system constraints, we provide a quantitative
confidentiality metric that guides system design and parameter selection.

10.1 Summary of Contributions

Our framework makes several key contributions to encrypted search security:
Theoretical foundations: We derived the maximum entropy distributions for encrypted search

components under realistic constraints, providing closed-form solutions for inter-arrival times (ex-
ponential), search agent identities (uniform), query cardinality (geometric), and trapdoor selection.
These results establish fundamental limits on confidentiality determined by system requirements
rather than cryptographic assumptions.

Practical measurement: By connecting entropy to lossless compression through Shannon’s
source coding theorem, we enable practical confidentiality measurement without explicit probabilis-
tic modeling. System operators can monitor entropy using standard compression tools, detecting
degradation and guiding countermeasure deployment.

Systematic improvement techniques: We analyzed multiple techniques for increasing en-
tropy including homophonic encryption, artificial query injection, query aggregation, and timing
obfuscation. Each technique trades specific resources for entropy gains, enabling informed decisions
about confidentiality-performance tradeoffs.

Quantitative tradeoff analysis: Our case study demonstrated improving a typical system
from 59% to 85% efficiency through combined application of homophonic encryption and artificial
queries, with quantified space and bandwidth costs. This illustrates how information-theoretic
analysis guides resource allocation for confidentiality improvements.

10.2 Implications for Practice

Our results have several practical implications for encrypted search deployment:
Design guidance: System designers can use maximum entropy distributions as targets, mea-

suring how closely their systems approach theoretical limits. The efficiency ratio provides a single
number summarizing confidentiality that can be tracked over time and compared across configura-
tions.

Parameter selection: Rather than ad-hoc parameter tuning, our framework enables principled
selection based on desired efficiency levels and available resources. For example, determining how
many trapdoor substitutions to use in homophonic encryption or what rate to inject artificial queries.

Cost-benefit analysis: By quantifying both confidentiality gains and resource costs, decision
makers can rationally allocate budgets across different countermeasures. High-value systems may
justify significant overhead for marginal entropy improvements, while resource-constrained deploy-
ments can identify high-impact low-cost techniques.

44

Attack resistance: Higher entropy directly translates to greater difficulty for adversaries at-
tempting statistical attacks. Our analysis shows that even modest entropy improvements substan-
tially increase the sample size required for successful inference attacks.

10.3 Limitations and Assumptions

Our framework makes several simplifying assumptions that should be acknowledged:
Independence assumptions: We assume independence between queries and between query

components when deriving maximum entropy. In practice, temporal correlations and user behavior
patterns introduce dependencies that reduce achievable entropy.

Known parameters: Our analysis assumes certain system parameters like arrival rates and
vocabulary sizes are known or observable. Uncertainty in these parameters affects both maximum
entropy calculations and confidentiality assessments.

Compression-based estimation: Using lossless compressors to estimate entropy introduces
positive bias that decreases slowly with sample size. Finite samples and suboptimal compressors
yield conservative (higher) entropy estimates.

Adversary model: We focus on passive adversaries observing encrypted search traffic. Active
adversaries with side channels, insider knowledge, or ability to manipulate traffic may achieve better
inference than entropy alone predicts.

10.4 Future Work

Several directions warrant further investigation:
Dynamic optimization: Develop adaptive systems that automatically adjust parameters

based on real-time entropy monitoring, maintaining target confidentiality levels under changing
workloads.

Correlated query models: Extend the framework to account for temporal correlations and
user behavior patterns, deriving tighter bounds on achievable entropy under realistic dependency
structures.

Adversary-aware metrics: Incorporate specific adversary capabilities and attack models into
confidentiality measures, moving beyond generic entropy to task-specific security metrics.

Differential privacy connections: Explore relationships between entropy-based confidential-
ity and differential privacy guarantees, potentially combining information-theoretic and privacy-
theoretic perspectives.

Implementation and evaluation: Build prototype systems implementing our proposed tech-
niques and evaluate their confidentiality-performance tradeoffs in realistic deployment scenarios with
actual user workloads.

Extension to richer query models: Apply the framework to more sophisticated query types
including range queries, Boolean combinations, and ranked retrieval, deriving maximum entropy
distributions for these extended models.

10.5 Closing Remarks

Encrypted search faces an inherent tension between functionality and confidentiality. Perfect
confidentiality renders search impossible, while unrestricted functionality leaks information. Our
information-theoretic framework quantifies this tradeoff, providing tools to navigate it rationally.

By measuring how far systems deviate from maximum entropy and identifying techniques to
close this gap, we enable principled encrypted search design. The entropy efficiency metric provides

45

a clear target: systems should strive for distributions as close to maximum entropy as resources and
functionality requirements permit.

As encrypted search systems become increasingly important for cloud computing, outsourced
storage, and privacy-preserving information retrieval, principled approaches to confidentiality anal-
ysis become essential. We hope this work contributes to more secure encrypted search deployments
by providing both theoretical understanding and practical tools for measuring and improving con-
fidentiality.

A Detailed Entropy Derivations

A.1 Geometric Distribution Entropy

The geometric distribution with parameter p has probability mass function:

pN(n) = p(1− p)n−1 for n = 1, 2, 3, . . . (A.1)

The entropy is:

H(N) = −
∞∑
n=1

p(1− p)n−1 log2
[
p(1− p)n−1

]
= −

∞∑
n=1

p(1− p)n−1[log2 p+ (n− 1) log2(1− p)]

= − log2 p

∞∑
n=1

p(1− p)n−1 − log2(1− p)

∞∑
n=1

p(n− 1)(1− p)n−1

= − log2 p− log2(1− p) · E[N− 1]

= − log2 p− log2(1− p) ·
(
1

p
− 1

)
= − log2 p−

1− p

p
log2(1− p)

=
−(1− p) log2(1− p)− p log2 p

p
.

(A.2)

For p = 1/µ where µ is the mean, we have E[N] = 1/p = µ.

A.2 Exponential Distribution Differential Entropy

The exponential distribution with rate λ has probability density function:

fT(t) = λe−λt for t > 0 . (A.3)

46

The differential entropy is:

H(T) = −
∫ ∞

0
λe−λt ln

[
λe−λt

]
dt

= −
∫ ∞

0
λe−λt(lnλ− λt) dt

= − lnλ

∫ ∞

0
λe−λt dt+ λ2

∫ ∞

0
te−λt dt

= − lnλ+ λ2 · 1
λ2

= 1− lnλ = 1 + ln
1

λ
.

(A.4)

Note that we use natural logarithm for differential entropy of continuous distributions, while
discrete entropy uses logarithm base 2.

A.3 Joint Entropy Decomposition

For random variables X1, . . . ,Xn, the joint entropy can be decomposed using the chain rule:

H(X1, . . . ,Xn) =
n∑

i=1

H(Xi | X1, . . . ,Xi−1) . (A.5)

When the random variables are independent:

H(X1, . . . ,Xn) =

n∑
i=1

H(Xi) . (A.6)

For independent and identically distributed random variables:

H(X1, . . . ,Xn) = n · H(X) . (A.7)

B Compression-Based Entropy Estimation

B.1 Theoretical Foundation

Shannon’s source coding theorem establishes that the expected length of an optimal prefix-free code
for a random variable X satisfies:

H(X) ≤ E[ℓ(X)] < H(X) + 1 (B.1)

where ℓ(x) is the code length for outcome x.
For sequences of length n:

H(Xn)

n
≤ E[ℓ(Xn)]

n
<
H(Xn)

n
+

1

n
(B.2)

As n→∞, the per-symbol code length converges to the entropy rate.

47

B.2 Practical Estimators

Given a sample x1, . . . , xn, we estimate entropy using a compression algorithm compress:

Ĥn = BL
(
compress(x1, . . . , xn)

)
(B.3)

Common compression algorithms and their characteristics:

• gzip: Fast, good for general text, achieves reasonable compression

• bzip2: Slower, better compression for repetitive data using Burrows-Wheeler transform

• LZMA/xz: Very good compression, slower, uses dictionary-based methods

• zstd: Fast modern algorithm with tunable compression levels

The estimator Ĥn is positively biased:

E[Ĥn] ≥ H(Xn) (B.4)

with the bias decreasing as the compressor approaches optimality and sample size increases.

B.3 Bias Correction

For finite samples, we can apply bias correction. If the true entropy rate is h and sample size is n,
the bias is approximately:

bias ≈ κ log n

n
(B.5)

for some constant κ depending on the source and compressor.
A bootstrap-based bias correction:

1. Compute Ĥn on the original sample

2. Generate B bootstrap samples of size m < n

3. Compute Ĥ(b)
m for each bootstrap sample

4. Estimate bias as Ĥm − m
n Ĥn

5. Correct: Ĥcorrected
n = Ĥn − bias

C Statistical Hypothesis Testing

C.1 Comparing Entropy Estimates

To test whether two systems have equal entropy:
Given estimates Ĥ1 and Ĥ2 from systems 1 and 2 with sample sizes n1 and n2:
Under asymptotic normality:

Z =
Ĥ1 − Ĥ2√

Var[Ĥ1]/n1 + Var[Ĥ2]/n2

∼ N (0, 1) (C.1)

approximately for large samples.
Variance can be estimated using bootstrap resampling or theoretical formulas specific to the

entropy estimator.

48

D Notation Reference

D.1 Random Variables and Distributions

• X: Random variable (capital letters)

• x: Realization of random variable (lowercase letters)

• pX(x): Probability mass function

• fX(x): Probability density function

• H(X): Shannon entropy

• I(X;Y): Mutual information

• E[X]: Expected value

D.2 Encrypted Search Components

• x: Plaintext query (bag-of-words)

• x̌: Hidden query (encrypted)

• d: Document

• ď: Result set

• λ: Query arrival rate

• µ: Mean trapdoors per query

• k: Number of search agents

• m: Vocabulary size

• N : Number of documents

D.3 Entropy and Information Measures

• H(X): Entropy of X

• H∗(X): Maximum possible entropy

• e: Efficiency ratio H /H∗

• I(X;Y): Mutual information

• BL(x): Bit length of x

49

References

[1] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu, and
Michael Steiner. Highly-scalable searchable symmetric encryption with support for boolean
queries. In Advances in Cryptology–CRYPTO 2013, pages 353–373. Springer, 2013.

[2] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against
searchable encryption. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 668–679, 2015.

[3] David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. In
Communications of the ACM, volume 24, pages 84–90, 1981.

[4] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric en-
cryption: Improved definitions and efficient constructions. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, pages 79–88, 2006.

[5] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th USENIX Security Symposium, pages 303–320, 2004.

[6] Eu-Jin Goh et al. Secure indexes. In Cryptology ePrint Archive, 2003.

[7] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.
In Journal of the ACM, volume 43, pages 431–473, 1996.

[8] Paul Grubbs, Marie-Sarah Lacharité, Brice Lloyd, and Kenneth G. Paterson. Pump up the
volume: Practical database reconstruction from volume leakage on range queries. Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 315–
331, 2018.

[9] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation. In Network and Distributed
System Security Symposium, 2012.

[10] Edwin T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):
620–630, 1957.

[11] Edwin T. Jaynes. On the rationale of maximum-entropy methods. Proceedings of the IEEE,
70(9):939–952, 1982.

[12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable symmetric
encryption. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, pages 965–976, 2012.

[13] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press, New York, NY, USA, 2008. ISBN 0521865719,
9780521865715.

[14] David Pouliot and Charles V. Wright. The shadow nemesis: Inference attacks on efficiently
deployable, efficiently searchable encryption. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 1341–1352, 2016.

50

[15] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27(3):379–423, 1948.

[16] Claude E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal,
28(4):656–715, 1949.

[17] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on
encrypted data. In Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages
44–55. IEEE, 2000.

[18] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path oram: An extremely simple oblivious ram protocol. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pages 299–
310, 2013.

[19] Alexander Towell. The perfect hash filter. 2017. Technical Report.

[20] Alexander Towell. The perfect map filter. 2017. Technical Report.

[21] Alexander Towell. The singular hash map. 2017. Technical Report.

[22] Alexander Towell. The singular hash set. 2017. Technical Report.

51

	Introduction
	The Information Leakage Problem
	An Information-Theoretic Approach
	Contributions

	Related Work
	Encrypted Search Systems
	Attacks on Encrypted Search
	Information-Theoretic Approaches
	Oblivious Computation
	Anonymity and Mix Networks

	Encrypted search model
	Probabilistic model
	Hidden query and result set streams
	Generative model

	Entropy and information
	Principle of maximum entropy

	Maximum entropy system
	Maximum Entropy Under Constraints
	System Constraints
	Maximum Entropy for Inter-Arrival Times
	Maximum Entropy for Search Agent Identities
	Maximum Entropy for Hidden Query Cardinality
	Maximum Entropy for Trapdoor Selection
	Maximum Entropy for Result Sets
	Joint Maximum Entropy
	Minimum Mutual Information

	Increasing the entropy of the system
	Multiple secure indexes per document
	Artificial secure indexes
	Homophonic encryption
	Query aggregation
	Artificial trapdoors
	Artificial hidden queries
	Alternative solution

	Obfuscating search agents
	Injecting artificial search agents
	Obfuscating inter-arrival times
	Estimating search agent arrival rates

	Case Study: Typical Encrypted Search System
	System Parameters
	Baseline: Simple Substitution Cipher
	Observed Distribution
	Entropy Calculation
	Efficiency

	Improvement 1: Homophonic Encryption
	Strategy
	Entropy Improvement
	Cost

	Improvement 2: Artificial Queries
	Entropy Improvement
	Cost

	Combined Strategy
	Attack Resistance
	Baseline Vulnerability
	Improved Resistance

	Recommendations
	Scenario 2: Large-Scale Cloud Deployment
	Scenario 3: High-Sensitivity Medical Records
	Summary

	Conclusion
	Summary of Contributions
	Implications for Practice
	Limitations and Assumptions
	Future Work
	Closing Remarks

	Appendices
	Detailed Entropy Derivations
	Geometric Distribution Entropy
	Exponential Distribution Differential Entropy
	Joint Entropy Decomposition

	Compression-Based Entropy Estimation
	Theoretical Foundation
	Practical Estimators
	Bias Correction

	Statistical Hypothesis Testing
	Comparing Entropy Estimates

	Notation Reference
	Random Variables and Distributions
	Encrypted Search Components
	Entropy and Information Measures

