Infinigram: Corpus-Based Language Modeling via Suffix Arrays
with LLM Probability Mixing

Technical Report

January 4, 2026

Abstract

We present Infinigram, a corpus-based language model that uses suffix arrays for variable-
length n-gram pattern matching. Unlike neural language models that require expensive train-
ing and fine-tuning, Infinigram provides instant “training”—the corpus is the model. Given
a context, Infinigram finds the longest matching suffix in the training corpus and estimates
next-token probabilities from observed continuations. This approach offers three key advan-
tages: (1) O(mlogn) query time enabling real-time predictions, (2) complete explainability
since every prediction traces to specific corpus evidence, and (3) the ability to ground large
language model (LLM) outputs through probability mixing without retraining. We introduce
a theoretical framework that views inductive biases as projections—transformations applied to
queries or training data that enable generalization. Runtime transforms project queries to find
better corpus matches, while corpus augmentations project training data to expand coverage.
This unified perspective provides a principled approach to out-of-distribution generalization in
corpus-based models. Infinigram achieves sub-10ms query latency on million-token corpora and
can handle datasets exceeding 100GB through chunked memory-mapped indexing.

1 Introduction

Language modeling—predicting the next token given a context—is fundamental to modern natural
language processing. The dominant paradigm involves training neural networks with billions of
parameters on massive text corpora, a process that requires substantial computational resources
and time. Fine-tuning these models for specific domains compounds the cost, yet is often necessary
to reduce hallucinations and improve domain-specific performance.

We revisit a simpler approach: using the training corpus directly as the model. N-gram language
models |Jelinek, 1991, (Chen and Goodman| [1996] have a long history in NLP, but traditional
implementations suffer from fixed context lengths and exponential memory growth. Variable-length
Markov models |Rissanen, |1983| Begleiter et al., 2004] address the fixed-length limitation but remain
computationally expensive for long contexts.

Infinigram leverages suffix arrays [Manber and Myers, 1993] to enable efficient variable-length
pattern matching. Given a context, we find the longest suffix that occurs in the training corpus and
use the distribution of tokens following that suffix as our prediction. This provides:

e Instant training: Building a suffix array is O(nlogn) for a corpus of size n, with no iterative
optimization.

o Explainability: Every prediction references specific corpus positions, enabling debugging
and interpretation.

e LLM grounding: Neural LM outputs can be mixed with corpus-based probabilities to reduce
hallucinations without retraining.

The key insight motivating Infinigram is that for many domain-specific applications, the relevant
patterns already exist in the target corpus. Rather than hoping a neural model will learn and retain
these patterns, we can retrieve them directly.

1.1 Contributions

Our contributions are:

1. A corpus-based language model using suffix arrays that provides O(mlogn) query complexity
for context length m and corpus size n.

2. A framework for LLM probability mizing that grounds neural model outputs in specific corpora
without fine-tuning.

3. A theoretical perspective on inductive biases as projections—transformations of queries or
data that enable generalization—with implementations of both runtime query transforms and
corpus augmentations.

4. An open-source implementation with memory-mapped indexing supporting corpora exceeding
100GB.

2 Method

2.1 Suffix Array Foundation

A suffix array [Manber and Myers| 1993| for a text T of length n is an array SA of integers in
[0,n — 1] that specifies the lexicographic ordering of all suffixes of T'. Formally, SA[i] gives the
starting position of the i-th smallest suffix. Suffix arrays can be constructed in O(n) time using
algorithms such as SA-IS |Nong et all [2009] or DC3 |Kérkkainen and Sanders| [2003|, though we
use the practical O(nlogn) divsufsort library for its speed in practice.

Given a pattern P of length m, we can find all occurrences in T' using binary search on SA in
O(mlogn) time. This is the key operation underlying Infinigram’s efficiency.

2.2 Variable-Length Suffix Matching

Traditional n-gram models use a fixed context length. Infinigram instead finds the longest matching
suffiz. Given a context ¢ = cyca. .. ¢y, we search for progressively longer suffixes starting from the
full context:

1: function LONGESTSUFFIX(c, SA, T)
2: for /{ = m down to 1 do

3 suffix - ¢[m — £+ 1 : m)|

4 if Count(suffix, SA, T') > 0 then
5: return positions, £

6: end if

7 end for

8 return (), 0

9: end function

This can be optimized by noting that if suffix s is not found, no longer suffix containing s as a
suffix can be found either. In practice, we start from the longest and stop at the first match.

2.3 Probability Estimation

Given the longest matching suffix of length ¢ occurring at positions {p1,...,px}, we estimate next-
token probabilities from the tokens following these positions. Let count(t) be the number of positions
where token t follows the matched suffix:

count(t) + «
P(t = 1
(t]e) >y count(t’) + a- |V| (1)
where « is a Laplace smoothing parameter and |V| = 256 for byte-level modeling. This ensures
non-zero probabilities for all possible continuations.

2.3.1 Hierarchical Weighted Prediction

Rather than using only the longest match, we can combine predictions from multiple suffix lengths:

P(t]c) = SF w(f) - county(t))

Zé::l w(l) - totaly
where w(/) is a weighting function. Infinigram supports linear (w(¢) = ¢), quadratic (w(f) = £2),
exponential (w(f) = b%), and sigmoid weighting functions. Longer matches receive higher weights
since they provide more specific context.

2.3.2 Stupid Backoff

We also implement Stupid Backoff |Brants et al., 2007], which uses the longest reliable match and
backs off to shorter contexts with a penalty factor A (typically 0.4):

(3)

S(t] ¢) = count(t | ¢)/total if count(c) > 7
B A S(t ’ C2:m) otherwise

This is faster than hierarchical prediction since it stops at the first sufficiently reliable match.

2.4 LLM Probability Mixing

The primary practical application of Infinigram is grounding neural language model outputs in
specific corpora. Given an LLM with next-token distribution Py and a corpus-specific Infinigram
model with distribution Piq, we compute:

Pﬁnal(t ‘ C) = PLLM(t | C) + (1 — a) . Plc,(t | C) (4)

where a € [0, 1] controls the mixing ratio. This provides several benefits:

e Domain adaptation without retraining: Mixing with a legal corpus boosts legal termi-
nology without fine-tuning.

e Hallucination reduction: Corpus-based probabilities anchor outputs to text that actually
exists.

e Real-time adaptation: Switching corpora is instant—mno retraining required.

e Interpretability: When the model produces unexpected output, we can trace the corpus
contribution.

The mixing parameter a can be fixed or adaptive based on the Infinigram model’s confidence
(match length and frequency). Low confidence indicates the corpus lacks relevant patterns, so the
LLM should dominate.

2.5 Byte-to-Token Marginalization

A practical challenge for probability mixing is that Infinigram operates at the byte level (vocabulary
size 256), while LLMs typically use subword tokenizers with vocabularies of 32k—100k+ tokens.
Directly mixing probabilities requires compatible token spaces.

We solve this through byte-to-token marginalization: computing token probabilities from byte

probabilities via the chain rule. For a token ¢ that encodes to byte sequence [by,ba, ..., by|:
k
P(t]e) = HPb|cb1,... bi_1) (5)

This is exact, not an approximation. A token is simply a named byte sequence, and its probability
is the joint probability of its constituent bytes under the chain rule.

Example. Consider context “Hello” and token “ world” (with leading space), which encodes to
bytes [32,119, 111, 114, 108, 100]:

Pie(* world” | “Hello”) = P(32 | “Hello”)
x P(119 | “Hello *)
x P(111 | “Hello w")
« P(114 | “Hello wo”)
P(108 | “Hello wor”)
P(100 | “Hello worl”) (6)

Each factor is a single Infinigram prediction, extending the context as we generate each byte.

Efficiency considerations. Computing token probabilities for all 100k+ tokens in a typical
LLM vocabulary would be prohibitive. In practice, we only compute Pig(t) for the top-k tokens from
the LLM distribution (typically & = 50-100), since the remaining tokens have negligible probability
anyway.

For numerical stability, we compute in log space:

k
log Pic(t | ¢) =Y log P(b; | ¢, b, ..., bi1) (7)
=1

and use log-sum-exp for the mixture:
log Panai(t) = log (a - elos PLum(t) 4 (1—-a)- elos PIG(t)) (8)

This approach has a key advantage: one byte-level index serves all LLM tokenizers. We build
the suffix array once over raw bytes and can compute token probabilities for GPT-4, Claude, Llama,
or any other model at query time without rebuilding the index.

3 Projections as Inductive Biases

A central theoretical contribution is viewing inductive biases as projections—transformations that
map queries or training data to enable better generalization. This framework unifies several tech-
niques under a common abstraction.

3.1 The Projection Framework

Let Q be the space of possible queries and D the training data space. An inductive bias helps the
model generalize from training data to novel queries. We observe that many useful inductive biases
can be expressed as projections:

e A query projection mg : @ — Q transforms the query before matching.

e A data projection mp : D — D transforms training data, typically creating augmented
variants.

The key insight is that instead of building complex models with implicit biases, we can achieve
similar effects through explicit, interpretable transformations.

3.2 Runtime Query Transforms

Infinigram supports runtime query transformations that project queries to find better corpus matches:

e lowercase: Convert query to lowercase, enabling case-insensitive matching.
e casefold: Unicode case folding for language-independent case normalization.
e strip: Remove leading/trailing whitespace.

e normalize_whitespace: Collapse multiple whitespace to single spaces.

For example, the query “THE CAT” with lowercase transform will match corpus occurrences
of “the cat”. This is a projection: we map the query to a normalized form where matching is more
likely.

Transforms can be composed sequentially. The model also supports beam search over transform
combinations, exploring multiple projected queries and combining their predictions with learned
weights.

3.3 Corpus Augmentation as Data Projection

Corpus augmentations apply projections to training data, creating additional variants that expand
pattern coverage. Given documents D = {d,...,d;} and augmentation functions {a1, ..., an}, the
augmented corpus contains:

D' = DU Jas(d)} (9)
i,J
For example, with a lowercase augmentation, the corpus containing “Hello World” also contains
“hello world”. Queries can then match either variant without runtime transformation.

3.4 Duality and Trade-offs

Query transforms and corpus augmentations are dual mechanisms achieving similar effects:

Aspect Query Transform Corpus Augmentation
Storage cost No increase Multiplicative
Query cost Transform + search Single search
Flexibility Runtime choice Build-time choice
Consistency Applied per-query Always available

Query transforms are preferable when storage is limited or flexibility is important. Corpus
augmentations are preferable when query latency is critical or certain projections should always

apply.

3.5 Theoretical Perspective

This projection framework suggests a path toward more sample-efficient corpus-based models. Com-
plex neural inductive biases—such as attention patterns, positional encodings, or architectural
constraints—implicitly project inputs to representations where patterns are easier to learn. Our
explicit projections make these transformations interpretable and composable.

Future work might explore richer projections: semantic clustering (map tokens to concept IDs),
lemmatization (map to root forms), or embedding-based soft matching (find semantically similar
contexts even without exact string overlap).

4 Implementation

Infinigram is implemented in Python with performance-critical operations delegated to C libraries.

4.1 Architecture

The system has four layers:

1. Suffix Array Engine: Uses pydivsufsort for O(nlogn) construction at 15-30 MB/s. Sup-
ports memory-mapped storage for corpora larger than RAM.

2. Core Model: The Infinigram class provides predict (), predict_weighted(), and predict_backoff ()
methods with configurable smoothing and transforms.

3. REST API: A FastAPI server provides OpenAl-compatible endpoints (/v1/completions)
for integration with existing tooling.

4. REPL: An interactive shell for exploration, dataset management, and ad-hoc queries.

4.2 Byte-Level Tokenization

Infinigram operates on raw UTF-8 bytes, giving a fixed vocabulary of 256 tokens. This avoids
tokenizer dependencies and vocabulary mismatch issues when mixing with different LLMs. The
trade-off is longer effective context lengths (characters require 1-4 bytes), mitigated by the efficiency
of suffix array queries.

4.3 Memory-Mapped Indexing

For large corpora, Infinigram uses memory-mapped files for both the corpus and suffix array. This
allows the operating system to page in only the needed portions, enabling queries on 100GB+
corpora with minimal RAM usage. For corpora exceeding available memory during construction,
a chunked index splits the data into independently indexed segments whose results are merged at
query time.

4.4 Performance

Target performance characteristics:

e Construction: 1M tokens/second (15-30 MB/s for byte-level)
e Query latency: <10ms for 100-token contexts

e Memory: <10 bytes per corpus token (8 bytes for suffix array + corpus)

5 Related Work

N-gram Language Models Traditional n-gram models [Jelinek}, 1991, Chen and Goodman,|1996]
estimate P(w, | w1,...,w,—1) from corpus counts with various smoothing techniques (Kneser-Ney,
Witten-Bell). These models use fixed context lengths, limiting their ability to capture long-range
dependencies. Infinigram’s variable-length matching addresses this limitation.

Suffix Arrays and Trees Suffix arrays [Manber and Myers, |1993| and suffix trees [Weiner, 1973,
McCreight, [1976] enable efficient string matching. The Burrows-Wheeler Transform and FM-index
[Ferragina and Manzini, [2000, 2005 provide compressed alternatives. Our use of suffix arrays for
language modeling builds on this algorithmic foundation.

Retrieval-Augmented Generation RAG systems |Lewis et all 2020, Izacard et al. 2022] re-
trieve relevant documents to condition neural generation. Infinigram differs by retrieving ezxact
pattern matches rather than semantically similar documents, and by modifying token-level proba-
bilities rather than prepending context. The approaches are complementary.

kNN-LM Khandelwal et al. [2020] propose augmenting neural LMs with a nearest-neighbor
lookup in a datastore of context embeddings. This requires storing embeddings for every training
token (hundreds of GB for large corpora) and uses approximate nearest neighbor search. Infinigram
uses exact string matching with much lower storage overhead.

Infini-gram Concurrent work by |Liu et al. [2024] presents a system also named “infini-gram”
that indexes massive web corpora (5 trillion tokens) for n-gram analysis and LLM augmentation.
Their focus is on scaling to web-scale data, while our work emphasizes the projection framework for
generalization and practical domain-specific applications.

6 Conclusion and Future Work

Infinigram provides a simple, fast, and explainable approach to language modeling that complements
neural methods. The ability to mix corpus-based probabilities with LLM outputs offers a practical
alternative to fine-tuning for domain adaptation. Our projection framework provides a theoretical
lens for understanding generalization in corpus-based models.

Future directions include:

e Richer projections: Semantic clustering, lemmatization, and edit-distance-based fuzzy
matching could expand coverage without proportional corpus growth.

o Adaptive mixing: Learning context-dependent « values for LLM probability mixing based
on match confidence and domain signals.

e Compressed indexes: FM-index or grammar-compressed representations could reduce stor-
age for highly repetitive corpora.

e Multi-scale models: Combining byte-level, subword, and word-level indexes to balance
specificity and coverage.

The source code is available at https://github.com/example/infinigram under an open-
source license.

References

Ron Begleiter, Ran El-Yaniv, and Golan Yona. On prediction using variable order Markov models.
Journal of Artificial Intelligence Research, 22:385-421, 2004.

Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och, and Jeffrey Dean. Large language models in
machine translation. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pages 858-867, 2007.

Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for language
modeling. Proceedings of the 34th Annual Meeting of the Association for Computational Linguis-
tics, pages 310-318, 1996.

Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. Proceedings
of the 41st Annual Symposium on Foundations of Computer Science, pages 390-398, 2000.

Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM, 52(4):
552-581, 2005.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models. arXiv preprint arXiv:2208.03299, 2022.

Frederick Jelinek. Up from trigrams! the struggle for improved language models. Proceedings of
Eurospeech, pages 1037-1040, 1991.

Juha Kérkkéainen and Peter Sanders. Simple linear work suffix array construction. Proceedings of
the 30th International Colloquium on Automata, Languages and Programming, pages 943-955,
2003.

https://github.com/example/infinigram

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generaliza-
tion through memorization: Nearest neighbor language models. In International Conference on
Learning Representations, 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented gener-

ation for knowledge-intensive NLP tasks. In Advances in Neural Information Processing Systems,
volume 33, pages 9459-9474, 2020.

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-gram:
Scaling unbounded n-gram language models to a trillion tokens. arXiv preprint arXiv:2401.17377,
2024.

Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches. SIAM
Journal on Computing, 22(5):935-948, 1993.

Edward M McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM,
23(2):262-272, 1976.

Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix array
construction. In IEEE International Symposium on Information Theory, pages 449-453, 2009.

Jorma Rissanen. A universal data compression system. IEFE Transactions on Information Theory,
29(5):656-664, 1983.

Peter Weiner. Linear pattern matching algorithms. Proceedings of the 14th Annual Symposium on
Switching and Automata Theory, pages 1-11, 1973.

	Introduction
	Contributions

	Method
	Suffix Array Foundation
	Variable-Length Suffix Matching
	Probability Estimation
	Hierarchical Weighted Prediction
	Stupid Backoff

	LLM Probability Mixing
	Byte-to-Token Marginalization

	Projections as Inductive Biases
	The Projection Framework
	Runtime Query Transforms
	Corpus Augmentation as Data Projection
	Duality and Trade-offs
	Theoretical Perspective

	Implementation
	Architecture
	Byte-Level Tokenization
	Memory-Mapped Indexing
	Performance

	Related Work
	Conclusion and Future Work

