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Abstract

We consider the problem of estimating component failure rates
in series systems when observations consist of system failure times
paired with partial information about the failed component. For the
case where component lifetimes follow exponential distributions, we
derive closed-form expressions for the maximum likelihood estimator,
the Fisher information matrix, and establish minimal sufficient statis-
tics. The asymptotic sampling distribution of the estimator is charac-
terized and confidence intervals are provided. A detailed analysis of a
three-component system demonstrates the theoretical results.
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1 Introduction

Series systems are fundamental in reliability engineering: the system fails
whenever any single component fails. In many practical situations, the exact
cause of system failure cannot be determined with certainty, but can be
narrowed to a subset of components. This partial information is known as
masked failure data. For example, a diagnostic system might isolate a failure
to one of two circuit boards without determining which board actually failed.



The problem of statistical inference from masked system failure data has
received considerable attention in the reliability literature. Usher and Hodg-
son [0] introduced maximum likelihood methods for estimating component
reliability from masked system life-test data, focusing on series systems with
exponentially distributed component lifetimes. Lin et al. [5| developed ex-
act maximum likelihood estimation procedures for more general masking
scenarios. The competing risks framework, where system failure can be at-
tributed to multiple failure modes, provides a natural setting for masked data
analysis [1]. More recent work has addressed interval-censored data [3] and
Bayesian approaches to masked failure data [].

Despite this body of work, closed-form analytical results remain limited,
particularly for the Fisher information matrix and asymptotic properties of
estimators under general masking patterns. Most existing methods rely on
numerical optimization or EM algorithms without explicit characterization
of estimator variance.

This paper focuses on series systems where component lifetimes follow
exponential distributions. The exponential assumption is justified in several
contexts: systems subject to random external shocks, systems with constant
hazard rates, and as a tractable model for early-stage analysis. More impor-
tantly, the exponential case admits closed-form solutions that provide insight
into the information structure of masked failure data.

1.1 Contributions

Our main contributions are:

1. Closed-form expression for the maximum likelihood estimator of com-
ponent failure rates from masked system failure times

2. Explicit formula for the Fisher information matrix under various mask-
ing scenarios

3. Identification of minimal sufficient statistics (mean system lifetime and
candidate set frequencies)

4. Characterization of the asymptotic sampling distribution and construc-
tion of confidence intervals

5. Detailed analysis of three-component systems including numerical val-
idation



1.2 Paper organization

Section 2 introduces the probabilistic model for series systems with masked
failures. Section 6 develops the likelihood and Fisher information for general
parametric families. Section 9 presents the main results for exponentially dis-
tributed components, including the MLE, information matrix, and sufficient
statistics. Section 15 provides detailed analysis of three-component systems.
Section 19 concludes with discussion.

2 Probabilistic Model

3 Series System Lifetime

Consider a system composed of m components. Component j has a random

lifetime T; > 0 for j = 1,...,m. We make the following assumptions:
Assumption 3.1. The component lifetimes T4, ..., T,, are mutually inde-
pendent.

Assumption 3.2. The system operates if and only if all components are
functioning (series configuration).

Under these assumptions, the system lifetime is:
S =min(Ty,...,Tm) (1)

Let F;(t) and f;(t) denote the CDF and PDF of component j. Define the
reliability function R;(t) =1 — Fj(t) = P{T; > t}.
The system reliability function is:

Rs(t) = [ 50 @
The system PDF is:
fs@=>_ 1 i ] Be®) (3)
=B



4 Masked Component Failures

When the system fails at time ¢, exactly one component caused the failure.
Let K € {1,...,m} denote the failed component. In many applications,
K cannot be observed directly. Instead, we observe a candidate set C C
{1,...,m} that contains the failed component with some probability.

Definition 4.1. An a-masked component failure with cardinality w con-
sists of a subset C of size w that contains the true failed component with
probability «.

We assume:

Assumption 4.2. The masking accuracy « and cardinality w are indepen-
dent of the system lifetime S and failed component K.

This assumption implies that the masking mechanism does not depend
on which component failed or when, only on the diagnostic capabilities of
the inspection process.

Definition 4.3. A masked system failure time is a triple (t,C,w) where t is
the observed system failure time, C is the candidate set of cardinality w.

5 Parametric Families

We assume component j has a lifetime distribution from a parametric family
indexed by parameter ¢%. The system parameter is ©* = (07, ...,0},).

Our data consists of a random sample of n independent masked system
failure times:

M, ={(t1,Cy),..., (tn, Cpn)} (4)

where we condition on fixed cardinality w for simplicity.



6 Likelihood and Fisher Information

7 Likelihood Function

Given the model assumptions, the conditional probability that component &
failed given system failure at time ¢ is:

Ji(®) T B5(1)
fs(t)

Under the a-masking model with fixed cardinality w, the conditional
probability of observing candidate set C given system failure at time ¢ is:

ZjeC fj(t) Hk;«éj Rk(t)
(") fs(t)

The joint density of system failure time and candidate set is:

pxs(k|t, ©%) = (5)

pojs,w(Clt,w, 0%) = (6)

fesw(Ctlw, 0%) = (@) > HEOT] Ret) (7)

1
(:vtl jeC k]
The likelihood function for sample M,, is:

£©eM,) =[] fesw(Ci, tilw, ©) 8)

=1

8 Fisher Information Matrix

The Fisher information matrix quantifies the expected information about ©*
contained in a single observation. Under regularity conditions, the (i, j)-th
element is:

Ol = ~E{g oy mfosw(C.Sw. O] O

For a sample of n observations, the information is additive:

T..(0%|w) = n - Z(0*|w) (10)



9 Exponentially Distributed Component Life-
times

10 Exponential Parametric Functions

Suppose component j has an exponentially distributed lifetime with failure
rate A}, denoted T; ~ EXP()}). The component has:

R;(t|\5) = exp(—\it) (11)
Fi(tA7) = Aj exp(=Ajt) (12)
hi(tAY) = \X (13)

where ¢ > 0 and )\]*- > 0.

Theorem 10.1. A series system with exponentially distributed component
lifetimes is exponentially distributed with failure rate > " im1 A

Proof. By equation (2),

Rs(t|A*) = Hexp —Ajt) —exp( [Z )\*] ) (14)

7=1
which is the reliability function of an exponential distribution with rate
Z] 1 )\; ]
The system PDF is:

- (E)es ([£4]) o

An important property of exponential series systems is that K and S are
independent:
)\*

2 e

Pr(k|AY) = (16)

The joint density is:

fics(k t|A") = A exp (- [Z A;.] t) (17)

7



Under the a-masking model, the joint density of candidate set and system
failure time is:

fesw(C, tlw, X*) = ( (Z A*) exp <—

jeC

) o

11 Maximum Likelihood Estimator

The likelihood function for sample M,, with candidate sets of cardinality w

v E](E) o

i=1 \jeC;

The log-likelihood is:
((AIM,,) Zln <Z by > [Z Aj] [Z ti] (20)
jeC j=1 i=1
The score function has j-th component:
V- 2 ke, Mk i=1

where 1¢(j) is the indicator function equal to 1 if j € C and 0 otherwise.

t (21)

Theorem 11.1. The mazimum likelihood estimator X, mazimizes the log-
likelihood (20) and satisfies the score equation VE(A,|M,) =0

In general, this requires numerical solution. However, for specific cases
(notably three-component systems with w = 2), closed-form solutions exist.

12 Sufficient Statistics

Theorem 12.1. For masked system failure times from exponentially dis-
tributed series systems, the statistics

n

f:%Zti and &= {&o:Ce[{1,...,m)") (22)

i=1

where @c =Y ¢ 1c(C;) are jointly sufficient for X*.
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Proof. The likelihood can be factored as:

L(AM,,) = exp (—m?i Aj> 11 (Z/\ ) (23)

j=1 jeC

which depends on the data only through ¢ and @&. By the factorization
theorem, these are sufficient statistics. O

The sufficiency result shows that all information about A* in the sample
is captured by: (1) the average system lifetime, and (2) the frequencies of
each candidate set.

13 Fisher Information Matrix

The (j, k)-th element of the Fisher information matrix for exponential series
systems is:

T (Shee) Toxelib)

[Z(N|w)] i " (24)
(w—ll) Zp 1 >\p
where the sum is over all candidate sets C of cardinality w.
Proof. From equation (9), we compute:
[Z(A*|w)]; Z/ W ————1In fogw(C, t|w, \) - (25)
Jegw(C, tlw, X*)dt (26)
The second derivative of the log density is:
& -

1 =— A 1 k 27

Substituting the joint density (18) and integrating over ¢ yields the result.
m



14 Asymptotic Sampling Distribution

Under regularity conditions, the MLE is consistent and asymptotically nor-
mal:

Theorem 14.1. Asn — oo,
VX, = A7) L MVN (0,27 (A |w)) (28)

This result follows from standard maximum likelihood theory [2]. The
asymptotic variance-covariance matrix is the inverse of the Fisher information
matrix.

14.1 Confidence Intervals

An asymptotic (1 — ) x 100% confidence interval for A% is:

A+ Zl—oc/?\/1 2 (Anlw)] (29)

n
where 21_q/ is the (1 — «/2)-quantile of the standard normal distribution.

15 Three-Component Systems

We provide detailed analysis for systems with m = 3 components, which
admits several closed-form results.

16 Candidate Sets of Size Two

Consider observations where each candidate set has cardinality w = 2. The
three possible candidate sets are {1,2}, {1,3}, and {2, 3}.
The log-likelihood is:

UL, @) = @10y In(A+A2) +@ 1 3) (A +A3) +@ 2,37 In(Ag+Az) =1t (A1 +Aa+A3)

(30)
The score equations are:
Wy 913y
NFhe T Mt 1
— | L0z | @8y | _oF —
Vi = e T e nt |1 0 (31)
L) 4 D23 1
A1+A3 A2+A3

10



Theorem 16.1. For three-component systems with w = 2, the MLE has the
closed-form solution:

X 1 %{1,2} + ‘%{173} - ‘?{273}
A, = — W(12} — W{1,3} T W{23} (32)
nt ~ -, 2
—W(12) T W3y T W23}

Proof. Setting the score to zero and solving the linear system yields the
result. O

The Fisher information matrix is:

1 1 1 1

1 PYEDY; T YRSV ERSERT e
Z( XN lw=2) = o wor T v T
( ’ ) 2()\,{ + )\5 + )\g) AlTAQ )\1-'1-)\2 ) )\2+)\3 L )\2——;-—)\3 )
PYEDY: PYEDY: NN TN
(33)
The inverse (asymptotic variance-covariance) is:
AT+ A5+ A3 -3 -5
AT+ + A5 |70 72 078 3 2
T N =2) = =—7— —\; X+ A5+ A3 -\
-5 -7 AT+ A+ A3

(34)
The asymptotic mean squared error (trace of variance-covariance) is:

3T+ A5+ A3)?
n

MSE(A,) = (35)

17 Candidate Sets of Size One

When w = 1, each observation identifies the exact failed component. This
represents the no-masking case. The MLE is:

i1 w1y
n=—| @ (36)
“{s}

The Fisher information matrix is diagonal:

I\ w=1) = (37)



The asymptotic variance-covariance is:
I (Nfw = 1) = (A} + A3 + Aj)diag(A], Az, A3) (38)
The MSE is:
(AT + A5+ A5)?
n

which is exactly 1/3 the MSE when w = 2, reflecting the additional
information from exact component identification.

MSE(A,|w = 1) = (39)

18 Numerical Validation

We validate the asymptotic theory through simulation. Let A* = (2,3,4)7
and w = 2. We generated » = 10000 samples of size n = 1000 and computed
the MLE for each.

The theoretical asymptotic variance-covariance matrix (evaluated at n =
1000) is:

0.081 —0.036 —0.027
IT'(X\|w=2)=|-0036 0.081 —0.018 (40)
—0.027 —0.018 0.081

1
1000

The sample variance-covariance from the 10000 MLEs is:

0081 —0.037 —0.027
Cov=|—0.037 0082 —0.018 (41)
—0.027 —0.018 0.081

The close agreement confirms the asymptotic approximation is accurate
for n = 1000.

19 Conclusion

We have developed a comprehensive framework for statistical inference in
series systems with exponentially distributed component lifetimes when fail-
ure data is masked. The exponential case admits closed-form expressions for
the maximum likelihood estimator, Fisher information matrix, and sufficient
statistics.

The main practical insights are:

12



1. The information content of masked data is quantified by the Fisher
information matrix, which depends on the masking cardinality w

2. Minimal sufficient statistics are the mean system lifetime and candidate
set frequencies

3. For three-component systems with w = 2, a closed-form MLE exists
4. Asymptotic confidence intervals provide practical uncertainty quantifi-

cation

19.1 Extensions

Several extensions merit investigation:
1. Variable masking cardinality across observations
2. Non-exponential lifetime distributions (Weibull, gamma)
3. Covariate effects on failure rates
4. Bayesian approaches when prior information is available
5. Optimal inspection strategies to minimize expected masking

The exponential case provides a foundation for understanding masked
system data. While the exponential assumption is restrictive, the analytical
tractability enables clear insight into the information structure that extends
conceptually to more complex settings.

A Numerical Solution Methods

For cases without closed-form solutions, the MLE must be computed numer-
ically. The Newton-Raphson algorithm is effective:

13



Algorithm 1: Newton-Raphson for Exponential MLE

Input: Initial guess )\(0), tolerance €
Output: MLE A\,

1 k<« 0;

2 repeat

3 Compute score s) = V(AP |M,,);

4 | Compute Hessian H® = V2¢(AF|M,,);
5 | Update A& = A®) _ [H®) 150,

6 k<+ k—+1,;

7 until [[A®TY — AB || < ¢

8 return A

The Hessian for the exponential log-likelihood is:

n

ﬂciXCi(j7 k)

i=1 <ZpECi )\p> ’

Convergence is typically rapid when initialized at a reasonable starting
point such as A® = (1/t,...,1/%).

[VQE(MMn)]jk = — (42)
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