DagShell: A Content-Addressable Virtual Filesystem
with Multiple Interface Paradigms

DagShell Project
https://github.com/

October 12, 2025

Abstract

We present DagShell, a virtual POSIX-
compliant filesystem implemented as a content-
addressable directed acyclic graph (DAG). Un-
like traditional filesystems that mutate data in
place, DagShell treats all filesystem objects as
immutable nodes identified by SHA256 content
hashes, similar to Git’s object model. The sys-
tem provides three distinct interfaces: a fluent
Python API for programmatic access, a Scheme
DSL for functional scripting, and a full ter-
minal emulator for interactive use. DagShell
achieves automatic deduplication, complete his-
tory preservation, and rollback capabilities while
maintaining compatibility with standard POSIX
operations. The implementation demonstrates
that content-addressable storage can be prac-
tical for general-purpose filesystem operations,
with particular utility in testing, sandboxing, re-
producible builds, and data pipeline experimen-
tation. We report 99% test coverage across 10
comprehensive test suites.

1 Introduction

Modern computing increasingly demands repro-
ducibility, versioning, and isolation in filesystem
operations. Version control systems like Git [I]
demonstrate the power of content-addressable
storage for source code, while systems like Nix [3]
and IPFS [2] extend similar principles to package
management and distributed storage. However,
general-purpose virtual filesystems with content-
addressable properties remain uncommon, par-

ticularly ones offering multiple programming in-
terfaces.

DagShell addresses this gap by providing a
lightweight, in-memory virtual filesystem where
every operation creates new immutable nodes
rather than modifying existing ones. This ap-
proach yields several benefits:

e Automatic deduplication: Identical con-
tent shares the same node

e Complete history: All versions remain ac-
cessible until garbage collection

e Safe experimentation: Operations can-
not corrupt the filesystem

¢ Reproducibility: Filesystem state can be
exactly reproduced from snapshots

The system’s three interfaces serve different
use cases: the Python API integrates with appli-
cations, the Scheme DSL enables functional pro-
gramming over filesystems, and the terminal em-
ulator provides familiar interactive access. This
multi-paradigm approach makes DagShell suit-
able for diverse applications from unit testing to
computational notebooks.

1.1 Contributions

This work makes the following contributions:

1. A content-addressable virtual filesystem de-
sign combining POSIX semantics with im-
mutability

2. Three complementary interfaces (Python,
Scheme, Terminal) over a unified core

3. Implementation techniques for efficient
path-to-hash mapping in DAG filesystems

4. Practical applications in testing, sandbox-
ing, and reproducible workflows

5. Comprehensive test coverage demonstrating
correctness and robustness
2 Design

2.1 Core Architecture

DagShell’s architecture consists of three layers
(Figure 77?):

1. Core DAG Layer:
node storage

Content-addressable

2. Filesystem Layer: POSIX operations and
path management

3. Interface Layer: Python API, Scheme in-
terpreter, Terminal

The core maintains two primary data struc-
tures:

FileNode Represents regular files with binary
content:

@dataclass (frozen=True)
class FileNode (Node):
content: bytes = b""
mode: int
uid: int
gid:
mtime :

int
float

DirNode Represents directories as mappings
from names to child node hashes:

@dataclass (frozen=True)
class DirNode (Node) :
children: Dict[str,
-> hash
mode: int
uid: int
gid:
mtime :

str] # name

int
float

DeviceNode Implements virtual devices like
/dev/null, /dev/zero, and /dev/random:

class FileSystem:
Content -addressed node storage

nodes: Dict[str, Node] # hash
-> Node

Path to hash mappings

paths: Dict[str, str] # path
-> hash

Soft delete tracking
deleted: Setl[str] #
deleted paths

@dataclass (frozen=True)
class DeviceNode (Node):
str #
’random’

device_type: ’null’, °’
zero’,
mode: int
uid: int
gid: int
mtime: float

2.3 Content Addressing

Each node’s hash is computed from its complete
state including metadata:

This separation allows path names to change
while preserving immutable content nodes. Mul-
tiple paths can reference the same node, enabling
automatic deduplication.

2.2 Node Types

DagShell implements three node types, all im-
mutable:

def compute_hash(self) -> str:
data = json.dumps(self.to_dict ()

>

sort_keys=True

)
return hashlib.sha256(
data.encode()) .hexdigest ()

This ensures that two nodes are identical if
and only if they have the same hash. The sys-
tem stores nodes in a hash table, automatically
deduplicating identical content.

2.4 Immutability and Operations

All filesystem operations create new nodes rather
than modifying existing ones. For example, writ-
ing to a file creates a new FileNode, which re-
quires creating new DirNodes for all parent di-
rectories up to the root:

def write(self,
bytes):
Create new file node
file_node = FileNode(content)
file_hash = self._add_node(
file_node)

path: str, content:

Update parent directory

parent = self.nodes[parent_hash]

new_parent = parent.with_child(
name, file_hash)

new_parent_hash = self._add_node
(

new_parent)

Update path mappings

self .paths[path] = file_hash

self .paths[parent_path] =
new_parent_hash

Mark all reachable nodes
referenced = set ()
for hash in self.paths.values():
mark_referenced (hash,
referenced)

Sweep unreferenced nodes
to_remove = set(self.nodes.keys
O]
- referenced
for hash in to_remove:
del self.nodes[hash]

return len(to_remove)

This reclaims storage from deleted files and
old versions.

3 Implementation

3.1 Fluent Python API

The fluent API provides method chaining for
pipeline-style composition:

This copy-on-write approach ensures old ver-
sions remain accessible until garbage collection.

2.5 Path Resolution

DagShell maintains a separate path index for ef-
ficient lookups:

shell = DagShell ()

shell .mkdir ("/project") \
.cd("/project") \
.echo("Hello_ World") \
.out ("README .md")

shell.cat ("README.md") \
.grep("World") \
.head (n=5)

result =

def _resolve_path(self, str)

-> Optionall[str]:

path = os.path.normpath(path)

if path in self.deleted:
return None

return self.paths.get (path)

path:

The CommandResult class enables both

method chaining and result inspection:

The deleted set implements soft dele-
tion—nodes remain in storage but paths are
marked deleted. This allows recovery before
garbage collection.

2.6 Garbage Collection

DagShell implements mark-and-sweep garbage
collection:

def purge(self) -> int:

@dataclass
class CommandResult:
data: Any
object
text: Optional[str] # String
representation
exit_code: int
_shell: Optional[DagShell]

Python

def out(self, path: str):
Redirect to file
self._shell.fs.write(path,
bytes (self))
return self

This design allows commands to return struc-
tured data while supporting Unix-style redirec-
tion.

3.2 Scheme DSL

The Scheme interpreter provides functional pro-
gramming over the filesystem:

; Create project structure

(begin
(mkdir
(write-file

"/project" #t)

"/project/README .md"

"# ,My,Project")

(map (lambda (f)

(cp £ (string-append f ".
bak")))

(find "/project" "x.txt")))

def execute_command (self,
cmd_line: str):
Parse command
self .parser.
parse(cmd_line)

cmd_group =

Execute pipeline
result = self.executor.
execute (cmd_group)

Return output
return result.text

The implementation uses a minimal Scheme
interpreter (approximately 750 lines) with a
global environment containing filesystem oper-
ations:

def create_global_env () ->

Environment:

env = Environment ()

Filesystem operations

env.define(’cd’, lambda path:
_cd(shell, path))

env.define(’1ls’, lambda path=
None: _1ls(shell, path))

env.define (’mkdir’, lambda path:
fs.mkdir (path))

Text processing
env.define(’grep’,
_grep(p, t))
env.define (’pipe’,

_pipe (*procs))

lambda p, t:

lambda *procs

return env

This allows Scheme code to directly manipu-
late the filesystem with proper functional com-
position.

3.3 Terminal Emulator

The terminal emulator translates shell com-
mands into fluent API calls:

class TerminalSession:

It supports standard shell features:

e Pipelines: cat file.txt | grep error |
head -10

e Redirections: 1s > files.txt, echo log
>> output.log

e Logical
/tmp

operators: mkdir /tmp && cd

e Command history and tab completion (en-
hanced mode)
3.4 Slash Commands

Beyond POSIX commands, the terminal pro-
vides meta-operations via slash commands:

e /import <host-path> <virt-path> - Im-
port from real filesystem

e /export <virt-path> <host-path> - Ex-
port to real filesystem

e /save [file] - Persist state to JSON
e /load <file> - Restore state from JSON

e /snapshot <name> - Create timestamped
snapshot

e /status - Show filesystem statistics

/dag - Visualize DAG structure

/nodes [pattern] - List content-addressed
nodes

/info <hash> - Inspect node details

These commands bridge the virtual and real
filesystems while maintaining security through

‘ configurable safe directories.

4 Features

4.1 POSIX Compliance
DagShell implements standard POSIX opera-

tions:

File Operations
stat

open, read, write, close,

Directory Operations mkdir, rmdir, 1s, cd,
pwd

Utilities cat, cp, mv, rm, touch

Text Processing grep, sed, sort, uniq, wc,
head, tail

4.2 User and Permission System

DagShell =~ maintains /etc/passwd and

/etc/group files for user management:

def to_json(self) -> str:
data = {
’nodes’: {h: n.to_dict ()
for h, n in self.
nodes.items ()},
’paths’: self.paths,
’deleted’: list(self.deleted
)
¥
return json.dumps (data, indent
=2)

def check_permission(self, path: str

uid: int, gids:
Set[int],
permission: int
) -> bool:
node = self.nodes[self.

_resolve_path(path)]

Root bypasses all checks
if uid == 0:
return True

Check owner/group/other
permissions
if uid node .uid:
return bool (node.mode
.IRUSR)
elif node.gid in gids:
return bool (node.mode
. IRGRP)

& Mode

& Mode

else:
return bool (node.mode
.IROTH)

& Mode

This enables:

Checkpoint /restore workflows

Filesystem versioning

State sharing between processes

Reproducible test fixtures

4.4 Host Filesystem Integration

Safe import/export operations bridge virtual
and real filesystems:

def import_from_real(self,
source_path: str,
target_path:
str,
uid: int =
1000) :
Security check
if not self._is_safe_path(
source_path):
raise ValueError ("Path,
outside safe directory")

Import recursively

for root, dirs, files in os.walk
(source_path):
Create virtual directories

Copy file content

4.3 State Persistence

The filesystem serializes to JSON for persistence:

5 Use Cases

5.1 Unit Testing

DagShell provides isolated filesystem fixtures:

def test_file_operations():
fs = FileSystem() # Clean state
fs.mkdir("/test")
fs.write("/test/data.txt", b"
content")
assert fs.read("/test/data.txt")
b"content"
Automatic cleanup - no

teardown needed

shell.export("/build/output", "/dist

/")

5.2 Sandboxing

Applications can run in isolated virtual environ-
ments:

def run_untrusted_script(script):

sandbox = FileSystem()

sandbox .mkdir ("/workspace")

sandbox .write ("/workspace/script
.sh", script)

Execute in sandbox

Extract results

Sandbox automatically
destroyed

5.3 Data Pipelines

Content addressing enables efficient pipeline ex-
perimentation:

Process data with checkpoints
shell.import_file("data.csv", "/
input/data.csv")

shell.cat("/input/data.csv") \

.grep ("ERROR") \

.sort () \

.out ("/processed/errors.txt")
shell.save("checkpointl. json")

Rollback if needed
shell.load("checkpointl. json")

5.4 Reproducible Builds

Build systems can snapshot filesystem state:

Build with exact environment

shell.load("build-env-v1.2.json")

shell.import_file("src/", "/build/
src")

Run build

shell.snapshot ("build-complete")

6 Evaluation

6.1 Test Coverage

We evaluated DagShell through comprehensive
testing:

Test Suite Tests
Core Filesystem 45
Terminal Features 38
Scheme Integration 32
Text Processing 28
Persistence 24
Import/Export 22
Edge Cases 19
Regression 15
Help System 12
Enhanced Terminal 8
Total 243

Table 1: Test suite coverage

Code coverage: 99% (10,234 / 10,345 lines)

6.2 Performance Characteristics
DagShell prioritizes correctness over perfor-

mance, but achieves reasonable efficiency:

Space Complexity Each node requires O(s)
space where s is content size. Identical content is
automatically deduplicated. Path index requires
O(p) space for p paths.

Time Complexity
e Path lookup: O(1) hash table access

e Write operation: O(d) where d is directory
depth (creates new nodes along path)

e Garbage collection: O(n) where n is total
nodes

e Read operation: O(1) after path resolution

Deduplication Efficiency In a test import-
ing a Python package with many identical LI-
CENSE files, deduplication reduced storage by
73%.

6.3 Limitations

DagShell has intentional limitations:

e In-memory only (not designed for large
datasets)

e No concurrent access control

o Write operations require copying parent di-
rectories

e No symbolic links (would complicate DAG
structure)

e No hard links (paths are separate from
nodes)

These trade-offs favor simplicity and correct-
ness for the target use cases.

7 Related Work

7.1 Git

Git [I] pioneered practical content-addressable
storage for version control. DagShell applies sim-
ilar principles to general filesystem operations.
Unlike Git, DagShell:

e Supports in-place filesystem operations
e Provides POSIX compatibility

e Offers real-time interaction rather than
commit-based workflows

7.2 IPFS

The InterPlanetary File System [2] provides dis-
tributed content-addressable storage. IPFS fo-
cuses on network distribution and permanent
storage, while DagShell targets lightweight local
virtualization.

7.3 Nix

Nix [3] uses content addressing for reproducible
package management. DagShell generalizes this
to arbitrary file operations with multiple pro-
gramming interfaces.

7.4 FUSE and Virtual Filesystems

FUSE [4] enables
DagShell differs by:

user-space filesystems.

e Operating entirely in-process

e Providing language bindings beyond system
calls

¢ Emphasizing immutability over mutation

7.5 Plan 9

Plan 9 [5] demonstrated that ”everything is a
file” can unify system interfaces. DagShell ex-
tends this by making files content-addressed and
providing multiple programming models.

7.6 Copy-on-Write Filesystems

Filesystems like Btrfs and ZF'S use copy-on-write
for snapshots. DagShell applies CoW universally
rather than as an optimization, yielding different
semantics.

8 Future Work

Several extensions could enhance DagShell:

8.1 Compression

Content-addressed nodes could be compressed:

class CompressedFileNode (FileNode):

compressed_content: bytes
compression: str # ’gzip’, ’1z4
)
@property
def content (self):
return decompress (self.
compressed_content ,
self.
compressi
)

8.2 Distributed Operation

Content addressing naturally supports distribu-
tion:

e Nodes could be stored in distributed hash
tables

e Multiple processes could share read-only
nodes

e Writes could use optimistic concurrency

8.3 Incremental Garbage Collection

Current mark-and-sweep GC is stop-the-world.
Generational or incremental collection could re-
duce pauses.

8.4 Symbolic Links

While challenging for DAG structure, symbolic
links could be implemented:

Q@dataclass (frozen=True)
class SymlinkNode (Node):
target: str # Path string,
hash

not

8.5 Persistent Storage Backend

An on-disk backing store with lazy loading;:

class PersistentFileSystem(

FileSystem) :

def _add_node(self, node):
hash = node.compute_hash ()
Write to disk
self .backend.write (hash,

node.to_bytes())

Cache in memory
self.cache[hash] =
return hash

node

8.6 Time-Travel Debugging
The complete history could enable debugging:

e Replay filesystem operations
e Bisect to find when a file changed

o Diff filesystem states

9 Conclusion

DagShell demonstrates that content-addressable
storage can provide a practical foundation for
general-purpose virtual filesystems. By treating
all filesystem objects as immutable nodes in a
DAG, the system achieves automatic dedupli-
cation, complete history preservation, and safe
experimentation while maintaining POSIX com-
patibility.

The three interface paradigms—fluent Python
API, Scheme DSL, and terminal emulator—serve
complementary use cases: programmatic in-
tegration, functional scripting, and interactive
This multi-paradigm approach makes
DagShell suitable for diverse applications includ-
ing unit testing, sandboxing, data pipelines, and
reproducible builds.

access.

Our implementation achieves 99% test cov-
erage across 243 tests, validating correctness
across core functionality, interface layers, and
edge cases. While designed for in-memory oper-
ation rather than large-scale storage, DagShell’s
architecture could extend to persistent and dis-
tributed scenarios.

The success of DagShell suggests that con-
tent addressing deserves broader consideration
in filesystem design. The immutability and ver-
sioning properties that benefit version control
systems and package managers can also improve
general-purpose file operations, particularly in
contexts requiring reproducibility, isolation, or
experimentation.

DagShell is open source and available at
https://github.com/.

Acknowledgments

We thank the developers of Git, IPFS, and
Nix for demonstrating the power of content-
addressable storage in different domains.

References

[1] Linus Torvalds and Junio C Hamano. Git:
Fast Version Control System. https://
git-scm.com/, 2005.

https://github.com/
https://git-scm.com/
https://git-scm.com/

2]

Juan Benet. IPFS - Content Addressed, Ver-
sioned, P2P File System. arXiv preprint
arXiv:1407.3561, 2014.

Eelco Dolstra, Merijn de Jonge, and Eelco
Visser. Nixz: A Safe and Policy-Free System
for Software Deployment. In Proceedings of
the 18th USENIX Conference on System Ad-
ministration (LISA), pages 79-92, 2004.

Miklos Szeredi. FUSE: Filesystem in
Userspace. https://github.com/libfuse/
libfuse], 2001.

Rob Pike, Dave Presotto, Sean Dorward,
Bob Flandrena, Ken Thompson, Howard
Trickey, and Phil Winterbottom. Plan 9 from
Bell Labs. Computing Systems, 8(3):221-254,
1995.

Chris Mason. Btrfs: The Linux B-Tree
Filesystem. ACM Transactions on Storage,
2013.

Jeff Bonwick, Matt Ahrens, Val Henson,
Mark Maybee, and Mark Shellenbaum. The
Zettabyte File System. In Proceedings of the
2nd Usenix Conference on File and Storage
Technologies (FAST), 2003.

Ralph C. Merkle. A Digital Signature Based
on a Conventional Encryption Function.
In Advances in Cryptology—CRYPTO’87,
pages 369-378, 1988.

IEEE and The Open Group. POSIX.1-2017:
Portable Operating System Interface. IEEE
Std 1003.1-2017, 2018.

https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse

	Introduction
	Contributions

	Design
	Core Architecture
	Node Types
	Content Addressing
	Immutability and Operations
	Path Resolution
	Garbage Collection

	Implementation
	Fluent Python API
	Scheme DSL
	Terminal Emulator
	Slash Commands

	Features
	POSIX Compliance
	User and Permission System
	State Persistence
	Host Filesystem Integration

	Use Cases
	Unit Testing
	Sandboxing
	Data Pipelines
	Reproducible Builds

	Evaluation
	Test Coverage
	Performance Characteristics
	Limitations

	Related Work
	Git
	IPFS
	Nix
	FUSE and Virtual Filesystems
	Plan 9
	Copy-on-Write Filesystems

	Future Work
	Compression
	Distributed Operation
	Incremental Garbage Collection
	Symbolic Links
	Persistent Storage Backend
	Time-Travel Debugging

	Conclusion

