The Beautiful Deception:
How 256 Bits Pretend to be Infinity

Alexander Towell
Southern Illinois University Edwardsville
Southern Illinois University Carbondale
atowell@siue.edu, lex@metafunctor.com

September 2, 2025

Abstract

How do you store infinity in 256 bits? This paper explores the fun-
damental deception at the heart of computational cryptography: using
finite information to simulate infinite randomness. We prove why true
random oracles are impossible, then show how lazy evaluation cre-
ates a beautiful lie—a finite automaton that successfully pretends to
be infinite. We reveal that “randomness” in cryptography is actually
computational hardness in disguise, demonstrating through Python
implementations how 256 bits of entropy can generate sequences indis-
tinguishable from infinite randomness to any computationally bounded
observer.

1 Introduction: The Impossible Oracle

Consider this paradox: cryptographic theory routinely assumes the existence
of random oracles [I]—functions that map any input to an infinite sequence
of perfectly random bits. Yet here we are, working with computers that can
barely store a few terabytes. How can we possibly implement something
that requires infinite storage?

The answer is: we can’t. And we don’t. Instead, we engage in an
elaborate and beautiful deception.

This paper tells the story of that deception. We begin by attempting
to implement a true random oracle—a class we’ll call OracleDigest—and
watch it fail in every possible way: running out of memory, unable to persist,
impossible to share. This failure is not a bug; it’s a constructive proof that
true random oracles cannot exist in our computational universe.

But from this impossibility emerges something remarkable: a determin-
istic construction we’ll call LazyDigest that uses just 256 bits of entropy
to generate what appears to be an infinite random sequence. The sequence
isn’t truly random—it has low Kolmogorov complexity and must eventually
cycle. Yet to any computationally bounded observer, it’s indistinguishable
from true randomness.

This is the beautiful deception: we’re not generating randomness at all.
We’re generating computational hardness and calling it randomness.

2 Mathematical Foundations

Before we can appreciate the deception, we need to understand what we're
trying to fake. This section provides the essential cryptographic definitions
that underpin our exploration.

2.1 Hash Functions and Random Oracles

Definition 1 (Probabilistic Polynomial Time (PPT)). An algorithm A runs
in probabilistic polynomial time if there exists a polynomial p(n) such that
for all inputs of length n, A terminates within p(n) steps and may use ran-
dommess in its computation.

Definition 2 (Cryptographic Hash Function). A function h : {0,1}* —
{0,1}™ is a cryptographic hash function if it satisfies:

1. Pre-image resistance: For randomly chosen y € {0,1}",
Pr[A(y) — z : h(x) = y] < negl(n)
2. Second pre-image resistance: For any z; € {0,1}*,

PrlA(z1) = z2 : 22 # x1 A h(z1) = h(22)] < negl(n)
3. Collision resistance:

PrlA() — (z1,22) : ©1 # x2 A h(z1) = h(x2)] < negl(n)

where A is any PPT adversary and negl(n) denotes a negligible function.

Definition 3 (Pseudorandom Function (PRF)). A function F : {0,1}* x
{0,1}™ — {0,1}™ is a pseudorandom function if for a randomly chosen key
k € {0,1}*, no PPT distinguisher can distinguish between Fy(-) and a truly
random function with non-negligible advantage.

Definition 4 (Random Oracle). A random oracle is a theoretical function
O :{0,1}* — {0,1}°° where:

1. For each new input x, the output O(x) is drawn uniformly at random
from {0,1}>°

2. For repeated queries, O(x) returns the same value (consistency)
3. For distinct inputs x1 # x2, outputs are statistically independent

The key difference: hash functions produce finite output, random oracles
produce infinite output. This difference is everything.

2.2 Kolmogorov Complexity and Information Content

The Kolmogorov complexity K (s) of a string s is the length of the shortest
program that outputs s. This gives us a formal way to measure information
content.

Theorem 1 (Information Content of Pseudorandom Sequences). Let S be
a sequence generated by a deterministic extended-output function with seed
s. Then:

K (S[0..n]) < |s| + |algorithm| + O(log n)

regardless of how large n becomes.

This theorem reveals the fundamental deception: any “infinite” sequence
generated deterministically from finite seed contains only finite information.
A truly random sequence of length n has K (S) ~ n, but our deterministically
generated sequences have K (S) & |s| bits regardless of length.

2.3 The Cycle Problem

Any deterministic function with finite state must eventually cycle.

Lemma 1 (Cycle Length Bounds). For any deterministic extended-output
function using a hash function with b-bit internal state:

o Mazimum cycle length: 2°

e FEzxpected cycle length: \/7 - 20/2 (by birthday paradoz [3])

o Minimum cycle length: 1 (degenerate case)

For SHA-256 with 256-bit state, the expected cycle length is approxi-
mately 2!?8—astronomically large but finite. We’ll see concrete implemen-
tations of such functions in the following sections.

With these mathematical foundations established, we now turn to im-
plementation. Our first attempt will be to build a true random oracle—and
watch it fail spectacularly.

3 OracleDigest: A Constructive Proof of Impossi-
bility

Let’s build a true random oracle and watch it fail:

class OracleDigest(Digest):
def __init__(self, input, entropy=None):
if entropy is None:
entropy = lambda: hashlib.sha256 (os.urandom
(32)) .digest ()
self .entropy = entropy
self.cache = {} # Maps <ndex -> random byte

def __getitem__(self, index):
if index not in self.cache:
self.cache[index] = self.entropy () [0]
return self.cache[index]

This implementation reveals why true random oracles are impossible:

3.1 The Four Impossibilities

1. Memory Unboundedness: Each new index adds to the cache. Ac-
cess enough indices and memory is exhausted. The oracle dies.

2. Non-Serializability: The cache contains random values generated
at runtime. You cannot save an OracleDigest to disk and restore it
later. The oracle is ephemeral.

3. Non-Reproducibility: FEach instance generates different random
values. You cannot replay computations or debug. The oracle is
untestable.

4. Non-Distributability: Different machines get different oracles. You
cannot share an oracle across systems. The oracle is isolated.

OracleDigest is not an implementation—it’s an impossibility proof. It
shows us what we cannot have, motivating what we must build instead.

Having proven the impossibility of a true random oracle, we now turn
to the elegant solution: a deterministic function that successfully pretends
to be random through the power of lazy evaluation.

4 LazyDigest: The Beautiful Deception

If we can’t have true randomness, we’ll fake it using lazy evaluation—a
computational strategy where values are computed on-demand rather than
eagerly pre-computed:

class LazyDigest(Digest):
def __init__(self, seed, hash_fn=hashlib.sha256):
self.seed = seed
self.hash_fn = hash_£fn

def __getitem__(self, index):
h = self.hash_fn()
h.update (self.seed)
h.update(str(index) .encode (’utf-87))
return h.digest () [0]

This is beautiful in its simplicity. We're computing:
LazyDigest[i] = h(seed||i)[0]

4.1 The Core Lie

LazyDigest perpetrates a fundamental deception:

e Appears: Infinite random sequence

Actually: Deterministic function with 256 bits of state

Information content: K (LazyDigest) = 256 bits + constant

Apparent information: Infinite

We’re achieving a compression ratio of infinity—representing unbounded
data with bounded information.

4.2 Why the Deception Works

The deception succeeds because of computational hardness:

Theorem 2 (Computational Indistinguishability [2]). If h is a secure PRF,
then for any PPT distinguisher D:

|Pr[D(LazyDigest,) = 1] — Pr[D(R) = 1]| < negl(n)
where R is a truly random sequence and s is chosen uniformly.

We’re not random—we’re computationally hard to distinguish from ran-
dom. This is a weaker guarantee but sufficient for cryptography.

4.3 The Inevitable Cycle

Since LazyDigest has finite state, it must eventually repeat:

Observation 1. After at most 2255 queries, LazyDigest must produce a

repeated value, entering a cycle. The expected cycle length is approrimately
9128

This seems like a fatal flaw, but 2128 is approximately 1038. If you queried
one billion indices per second, it would take 10%! years to expect a cycle—far
longer than the age of the universe.

The basic LazyDigest construction is elegant but can be enhanced with
more sophisticated techniques to extend cycle length and improve security

properties.
5 Extending the Deception: Advanced Construc-
tions

To extend the cycle length and improve the deception, we can use more
sophisticated constructions.

5.1 Hierarchical Seeding

Instead of one seed, use a tree of seeds:

1 |class HierarchicallazyDigest:

2 def __getitem__(self, index):
3 # Three levels: epoch, chunk, posttion
i epoch = index // (2%x%40)

1

N

chunk = (index % (2x%40)) // (2*x%20)
position = index % (2*%20)

Derive hrerarchical seeds

epoch_seed = h(self.master_seed || "epoch" ||
epoch)

chunk_seed = h(epoch_seed || "chunk" || chunk)

value = h(chunk_seed || position) [0]

return value

This extends the effective period by structuring the state space hierar-

chically.

5.2 Sponge Construction

The sponge construction (used in SHA-3) provides tunable security:

class SpongelazyDigest:

def

def

__init__(self, seed, capacity=256):

self.seed = seed

self.capacity = capacity # Buts of 4nternal
state

__getitem__(self, index):

Initialize sponge state

state = self.initialize_sponge(self.seed, self.
capacity)

Absorb index
state = self.absorb(state, index)

Squeeze out one byte
return self.squeeze(state, 1) [0]

Larger capacity means longer cycles but slower generation.

5.3 Deterministic Rekeying

Periodically derive new seeds deterministically:

class RekeyinglazyDigest:

def

__getitem__(self, index):

Rekey every 2732 indices
epoch = index // (2%%32)
local_index = index % (2%%*32)

Derive epoch key

if epoch ==
key = self.seed
else:
key = h(self.seed || "rekey" || epoch)

return h(key || local_index) [0]

This prevents even theoretical cycle detection across epochs.

5.4 Comparison of Constructions

Table 1: Comparison of LazyDigest Constructions

Construction Cycle Length | Memory | Computation | Security Property
Basic LazyDigest < 2%6 0(1) 1xh Single hash security
Hierarchical ~ 2310 O(logn) 3xh Extended state space
Rekeying Undetectable O(k) 2xh Forward security
Sponge ~ 2°¢ 0(1) 3xh Tunable capacity ¢
Multi-Hash ~ 2250 x m O(1) 1 X h; Algorithm rotation
XOR Composite min(h;) X m O(m) m X h All-or-nothing security
Composite Maximum O(k +m) (3+m) xh Combined benefits

Where h denotes a hash operation, m is the number of hash functions,
k is the cache size, and c is the sponge capacity.
Our exploration of various LazyDigest constructions reveals deeper con-
nections to fundamental mathematical concepts. We now examine how these
implementations relate to broader questions about computability and rep-

resentation.

6 Mathematical Perspectives: Uncomputable Re-
als and Lazy Evaluation

Our exploration of LazyDigest reveals profound connections to fundamental

questions in mathematics and computation.

In this section, we explore

how random oracles relate to uncomputable real numbers and how lazy
evaluation bridges the finite and infinite.

6.1 Random Oracles and Uncomputable Reals

There’s a profound connection between random oracles and real numbers.
Most real numbers are uncomputable—they cannot be generated by any
finite algorithm. Consider:

e The set of computable reals has measure zero in R
e Almost all real numbers require infinite information to specify

e For most reals, the shortest “program” is the number itself—its infinite
digit sequence

A random oracle is the cryptographic analog of an uncomputable real:

Theorem 3 (Random Oracles as Uncomputable Objects). A true random
oracle O has the following properties:

1. K(O(x)[0..n]) = n for any input x (mazimal Kolmogorov complexity)
2. No finite program can generate O’s outputs
3. The oracle requires infinite information to specify completely

This is why true random oracles are impossible to implement: they’re the
cryptographic equivalent of trying to store an uncomputable real number.
Just as Chaitin’s constant (the halting probability) is a well-defined real
number that no algorithm can compute, a random oracle is a well-defined
function that no algorithm can implement.

The measure-theoretic perspective is illuminating;:

e Computable reals (like 7, e, v/2): Measure zero, finite programs

e Uncomputable reals (almost all reals): Measure one, infinite infor-
mation

e LazyDigest outputs: Computable, finite program, appears random

¢ Random oracle outputs: Uncomputable, infinite information, truly
random

We’re using computable functions to approximate uncomputable ones—
the same deception that lets us use floating-point arithmetic to approximate
real analysis.

6.2 Lazy Evaluation and Mathematical Constants

The concept of representing infinite objects through finite programs is not
unusual—it’s the foundation of algorithmic information theory. Consider 7:
we can compute any digit of 7 using a finite algorithm (such as the Bailey-
Borwein-Plouffe formula for hexadecimal digits). This is lazy evaluation in
its purest form:

e Finite description: The algorithm is a few hundred bytes
e Infinite output: We can compute arbitrarily many digits
e On-demand computation: We only compute the digits we observe

e Composability: We can implement comparison operations like 7 < x
for any computable x

This parallels our LazyDigest exactly. Just as we can perform algebra
on 7 (at least linear operations like 7 + e or 37), we can perform operations
on lazy digests. The key insight: the shortest program that describes the
data is often an example of lazy evaluation.

The difference between 7 and LazyDigest is not structural but semantic:

e 71 has mathematical meaning—its digits encode geometric relation-
ships

e LazyDigest has cryptographic meaning—its bytes encode computa-
tional hardness

Both achieve the same compression: finite program — infinite sequence.
But there’s a crucial distinction:

e 7 and LazyDigest are computable—they have finite Kolmogorov com-
plexity

e Most real numbers and true random oracles are uncomputable—they
have infinite Kolmogorov complexity

We're in the measure-zero set of computable functions, pretending to be
in the measure-one set of uncomputable ones. Linear operations (addition,
XOR) naturally preserve laziness, while non-linear operations (square roots,
modular exponentiation) may require new algorithms. This explains why
our XOR construction in the next section works so elegantly—XOR is the
perfect linear operation for combining lazy cryptographic sequences.

10

AW N

Having explored the mathematical foundations of our deception, we now
turn to the practical security principles that make these constructions robust
in real-world applications.

7 Security Pillars: Defense in Depth

Our constructions embody several fundamental security principles that pro-
vide robustness beyond simple cryptographic primitives.

7.1 Algorithm Diversity (Defense in Depth)

The XOR construction demonstrates the principle of algorithm diversity—
using multiple independent algorithms so that breaking the system requires
breaking all of them simultaneously:

class LazyXorMultiHash:
def __getitem__(self, index):

result = 0

for hash_fn in [sha256, shab12, sha3_256, blake2b
]:
result "= hash_fn(seed || index) [0]

return result

Theorem 4 (XOR Security Amplification [4]). Let H = {hy, ha, ..., hn} be
independent hash functions. The XOR construction hxor(z) = @, hi(x)
is secure if at least one h; is secure.

This provides:

e Hedging against cryptanalysis: Future attacks may break SHA-2
but not SHA-3

¢ Quantum resistance: Different algorithms have different quantum
vulnerabilities

e Implementation diversity: Bugs in one implementation don’t com-
promise the system

e Computational trade-off: n-fold computation for exponential se-
curity gain

11

7.2 Temporal Isolation (Forward Security)

The rekeying construction provides forward security—compromise of the
current state doesn’t reveal past outputs:

class RekeyinglLazyDigest:
def __getitem__(self, index):
epoch = index // rekey_interval
key = derive_epoch_key(epoch) # One-way
derivation
return h(key || local_index) [0]

Even if an attacker obtains the key for epoch n, they cannot derive keys
for epochs 0..n — 1 due to one-way key derivation.
7.3 Structural Redundancy (Hierarchical Security)

The hierarchical construction provides security through structural redun-
dancy:

class HierarchicallLazyDigest:
def __getitem__(self, index):

epoch_seed = h(master || "epoch" || epoch)
chunk_seed = h(epoch_seed || "chunk" || chunk)
value = h(chunk_seed || position) [0]

return value

This creates multiple security boundaries:
e Compromise at position level doesn’t reveal chunk seed
e Compromise at chunk level doesn’t reveal epoch seed

e Compromise at epoch level doesn’t reveal master seed

7.4 Capacity Reservation (Sponge Security)

The sponge construction reserves capacity that never leaves the system:

class SpongelLazyDigest:
def __init__(self, seed, capacity=256):

’capactity’ bits mever exzposed to output
self .capacity = capacity

This provides:

e State hiding: Part of the state is never revealed

12

e Tunable security: Larger capacity = stronger security

e Collision resistance: 2¢@acity/2 collision resistance

7.5 Compositional Security

Multiple security pillars can be combined:

class UltraSecurelazyDigest:
def __getitem__(self, index):

Combine all securtity pillars

xor_hash = self.xor_multi_hash[index] #
Algorithm diverstty

rekeyed = self.rekeying[index] #
Temporal isolation

hierarchical = self.hierarchical[index] #
Structural redundancy

sponge = self.sponge[index] #
Capactty reservation

return xor_hash ~ rekeyed ~ hierarchical ~ sponge

7.6 The Security Philosophy

These pillars reflect a fundamental philosophy: assume failure and design
for resilience. We don’t trust any single:

e Algorithm (might be broken)

e Implementation (might have bugs)

e Time period (might be compromised)
e Structural level (might be breached)

Instead, we create systems where multiple independent failures are re-
quired for total compromise. This is the cryptographic equivalent of the
Byzantine Generals Problem—achieving security despite potential failures
in components.

With our security principles established, we can now develop a rich al-
gebra of operations on lazy digests, mirroring the algebraic operations on
mathematical constants.

13

8 An Algebra of Operations

Just as we can perform arithmetic on m without computing all its digits,
LazyDigest supports rich algebraic operations that preserve laziness. This
isn’t coincidence—it’s a fundamental property of lazy evaluation. The al-
gebra we develop here mirrors the algebra of computable real numbers, but
operating in the space of cryptographic sequences rather than mathematical

constants.

8.1 Lazy Operations (Infinite — Infinite)

class LazyDigest:

def

def

def

xor (self, other):
"""XOR wtth another lazy digest"""
return LazyXorDigest(self, other)

slice(self, start, step):
"""Take every step-th element starting at start

nnn

return LazySliceDigest (self, start, step)

transform(self, f):
"""Apply function f to each element”"""
return LazyTransformDigest (self, f)

These operations compose infinite sequences without materializing them.
Note that these are all linear operations—they can be computed element-
wise without global knowledge. Non-linear operations (like finding the me-
dian of an infinite sequence or computing modular inverses) would require
fundamentally different algorithms or may be impossible to compute lazily.

8.2 Concrete Operations (Infinite — Finite)

class LazyDigest:

def

def

def

truncate (self, n):
"""Take first n bytes (projection)"""
return Digest(bytes ([self[i] for i in range(n)]))

sample (self, indices):
"""Extract spectific positions
return bytes ([self[i] for i in indices])

naumnn

fold(self, f, init, n):

14

"""Reduce first n elements”"""

result = init
for i in range(n):

result = f(result, self[i])
return result

These operations project infinite sequences to finite values.

Having developed our theoretical framework and operational algebra, we
now explore practical applications where the LazyDigest deception provides
real value.

9 Applications: Where the Deception Matters

9.1 Deterministic Test Data

Generate reproducible infinite test streams:

def test_stream(test_id):
"""Each test gets its own infintte reproducibdble
stream”"""
seed_str = "test_" + str(test_id)
seed = hashlib.sha256(seed_str.encode()).digest ()
return LazyDigest (seed)

Same test always gets same data
stream = test_stream("unit_test_1")
test_data = stream.truncate(1024) # Get 1KB of test data

9.2 Memory-Hard Key Derivation

Force memory access patterns for password hashing:

def memory_hard_kdf (password, salt, memory_cost):
seed = hashlib.sha256(password + salt).digest ()
lazy = LazyDigest (seed)

Force random memory accesses
indices = generate_access_pattern(memory_cost)

memory_data = lazy.sample(indices)

return hashlib.sha256 (memory_data).digest ()

15

9.3 Blockchain Proof-of-Work

Model mining as searching the output space:

def find_proof_of_work(block_header, difficulty):
base_seed = hashlib.sha256(block_header).digest ()

for nonce in range (2**32):
Create candidate by hashing header + nonce
h = hashlib.sha256()
h.update (base_seed)
h.update (nonce.to_bytes (4, ’big’))
candidate = h.digest ()

if leading_zeros(candidate) >= difficulty:
return nonce

return None # No solution found

10 The Philosophical Core: Randomness as Com-
putational Hardness

Our journey from OracleDigest to LazyDigest reveals fundamental questions
about the nature of randomness, existence, and computation. This section
explores the philosophical implications of our cryptographic deception.

10.1 The Constructivist Challenge: Do These Objects Even
Exist?

Here’s a radical question: Are real numbers even a coherent concept? Many
mathematicians—constructivists and finitists—argue they’re not. From Kro-
necker’s “God made the integers, all else is the work of man” to modern
constructive mathematics, there’s a compelling case that:

e Only finite objects that can be explicitly constructed are mathemati-
cally coherent

e The real numbers, as a completed infinity, are an incoherent fantasy

e Most of classical mathematics deals with objects that cannot exist in
any meaningful sense

16

The Church-Turing thesis suggests a precise boundary: only objects
computable on a Universal Turing Machine have potential exis-
tence. Everything else is mere symbol manipulation without referent.

From this perspective, random oracles and most real numbers share the
same ontological status—they’re both incoherent:

Theorem 5 (The Constructivist Equivalence). Under the constructivist in-
terpretation:

1. An uncomputable real number cannot be said to exist
2. A true random oracle cannot be said to exist
3. Both are equally incoherent mathematical fantasies

4. Only their computable approximations (like m and LazyDigest) have
potential existence

This isn’t just philosophy—it has practical implications. We cannot
implement the incoherent:

e We cannot store a “random” real number—only rational approxima-
tions

e We cannot implement a true random oracle—only LazyDigest
e We cannot compute with actual infinities—only finite approximations

LazyDigest thus represents something profound: it’s the constructivist’s
answer to the random oracle. Instead of pretending an incoherent object
exists, we replace it with something that does exist—a finite program that
generates apparently random output on demand.

The “deception” of LazyDigest might be more honest than classical
mathematics. We're not claiming to have an infinite random sequence; we're
openly admitting we have a finite program that produces one. We're not
working with incoherent infinities; we’re working with coherent finite pro-
cesses that can generate unbounded output.

In this light, cryptography is inherently constructivist. We can only
implement what we can compute, and what we can compute is precisely
what can exist on a UTM. The boundary of cryptographic possibility is the
boundary of computational existence.

17

10.2 Two Theories of Randomness

We have two incompatible definitions of randomness:

1. Information-theoretic: A sequence is random if it has high Kol-
mogorov complexity

2. Computational: A sequence is random if no efficient algorithm can
distinguish it from truly random

LazyDigest fails the first definition catastrophically—it has tiny Kol-
mogorov complexity. But it passes the second definition perfectly (assuming
secure hash functions).

10.3 The P # NP Bet
Every use of LazyDigest is implicitly betting that P # NP:

Theorem 6. If P = NP, then LazyDigest can be distinguished from random
i polynomial time.

Proof. If P = NP, we can invert the hash function A in polynomial time.
Given a sequence S, we can check if there exists a seed s such that S[i] =
h(s||7)[0] for all observed i. This distinguishes LazyDigest from random. [J

We’re not generating randomness—we’re generating a computationally
hard problem and hoping nobody can solve it.

10.4 The Beautiful Paradox

LazyDigest embodies a beautiful paradox:
e Simple: Just hash seed concatenated with index

e Complex: Output appears completely random

Finite: Only 256 bits of true information

Infinite: Can generate unbounded output
¢ Deterministic: Same seed always gives same sequence

e Unpredictable: Cannot predict next value without seed

This paradox is the heart of modern cryptography: simple deterministic
processes that appear complex and random to bounded observers.

18

10.5 Entropy, Time’s Arrow, and Computational Bounded-
ness

Here’s a radical proposition: entropy and randomness are not objective
properties of systems but subjective experiences of computationally bounded
observers. Consider Laplace’s demon—a hypothetical being with unlimited
computational power and perfect information:

“An intelligence which could know all forces by which nature is
animated... would embrace in the same formula the movements
of the greatest bodies of the universe and those of the lightest
atom; for it, nothing would be uncertain and the future, as the
past, would be present to its eyes.” —Pierre-Simon Laplace,
1814

To Laplace’s demon:

e LazyDigest is trivially non-random—just compute h(seed||7)
e A broken egg could be reversed—just invert the dynamics

e The future and past are equally determined and accessible

e There is no entropy, only deterministic evolution

But we are not Laplace’s demons. We are computationally bounded,
and this boundedness creates our entire experience of reality:

Theorem 7 (The Computational Arrow of Time). For computationally
bounded observers:

1. The past is fized (we remember it)

2. The future is uncertain (we cannot compute it fast enough)
3. Entropy increases (we cannot invert the dynamics)

4. Randomness exists (we cannot distinguish from true random,)

This isn’t just philosophy—it’s the foundation of cryptography. A hash
function is essentially a “fast-forward only” time machine:

e Forward (past — future): h(zx) is easy to compute
e Backward (future — past): Finding = given h(x) is computationally

infeasible

19

10.5.1 The Broken Egg Principle
A broken egg is a perfect physical analog of a cryptographic hash:
e Breaking (forward): Easy, just drop it

e Unbreaking (backward): Computationally infeasible for bounded be-
ings

e Information preserved: In principle, all information about the orig-
inal egg exists in the broken pieces

e Practical irreversibility: We cannot compute the reverse transfor-
mation

The second law of thermodynamics might not be a law of physics but
a statement about computational complexity. Entropy increases not be-
cause information is destroyed but because we cannot compute the inverse
transformations needed to decrease it.

10.5.2 Trapdoor Functions as Temporal Asymmetry

Trapdoor functions formalize this temporal asymmetry:
f:X =Y where f is easy but f~! is hard without secret k

This is precisely the structure of our temporal experience:

e Moving forward in time: Easy (just wait)

e Moving backward in time: Computationally infeasible

e The “trapdoor”: Would be the demon’s unlimited computation

LazyDigest creates an artificial arrow of time. Given index i, we can
easily compute future indices but cannot determine what came before with-
out the seed. We’ve created a computational universe with its own entropy
and irreversibility.

10.5.3 Randomness as Computational Relativity

Just as Einstein showed that simultaneity is relative to the observer’s ref-
erence frame, we're suggesting that randomness is relative to the observer’s
computational frame:

20

Definition 5 (Computational Relativity of Randomness). A sequence S is
random relative to computational class C if no algorithm in C can distinguish
S from truly random with non-negligible advantage.

This means:

e To a classical computer: Quantum states appear random
e To a bounded computer: LazyDigest appears random

e To an unbounded computer: Nothing appears random

e To us: The universe might appear random simply because we’re com-
putationally weaker than the process generating it

The profound implication: If the universe itself is computational, then
“true” randomness might not exist at all. What we call randomness might
always be computational hardness relative to our bounded perspective. The
universe might be entirely deterministic, appearing random only because
we’re trapped in our computational reference frame, unable to compute fast
enough to see the determinism.

In this view, LazyDigest isn’t simulating randomness—it’s demonstrat-
ing what randomness actually is: deterministic processes that exceed our
computational grasp.

10.5.4 The Library of Babel and the Specification Problem

Borges’s Library of Babel contains every possible book—and this reveals a
fundamental computational asymmetry that mirrors our universe:

e Generation: Trivially easy to lazily generate all books (just enumer-
ate all strings)

e Specification: Impossibly hard to find any particular meaningful
book

e Location: Given a book, nearly impossible to determine its index in
the enumeration

This is precisely the structure of LazyDigest and perhaps reality itself:

Theorem 8 (The Generation-Specification Asymmetry). For many com-
putational processes:

21

1. Generation is easy: O(n) to generate n elements lazily
2. Specification is hard: O(2") to find a specific element

3. Localization is hard: Given an element, determining its index is com-
putationally infeasible

Consider the profound parallel to our existence:

e The universe might “lazily generate” itself through simple rules (like
cellular automata or quantum evolution)

e We find ourselves somewhere in this vast generative process

e But determining “where” we are in the space of all possible universes
is computationally impossible

e We can’t even determine our index in time without external reference
(when did the universe begin?)

LazyDigest embodies this same paradox:

Easy: Generate the millionth byte
byte = lazy_digest [1000000]

Hard: Find which tndex produces byte 0z42
index = ? # Computationally <infeasible without brute
force

Hard: Given a sequence, find the seed
seed = 7 # Requires inverting the hash function

This suggests a radical reinterpretation of reality: We might live in a
lazily evaluated universe where:

e The “program” (laws of physics) is simple

The output (reality) appears infinitely complex

Our location in the computation is unknowable

The past is just the indices we’ve already computed

The future is the indices yet to be evaluated

22

The Library of Babel isn’t just a thought experiment—it’s the structure
of computational reality. Every lazy generative process creates its own Li-
brary of Babel, where generation is trivial but specification and localization
are computationally prohibitive. The universe might be the ultimate Library
of Babel, lazily generating all possible states, with conscious observers like
us lost somewhere in its infinite stacks, unable to determine our coordinates
in the vast space of possibility.

Just as a reader in Borges’s library could never find a specific book with-
out its exact coordinates, we cannot specify our exact position in the uni-
verse’s computational unfolding. We know we’re somewhere in the library of
reality, reading the book of our existence, but the catalog is computationally
inaccessible. This isn’t a limitation of our knowledge—it’s a fundamental
computational barrier.

11 Performance Considerations

11.1 Time Complexity

Single index access: O(1) hash computations

Range of n indices: O(n) hash computations
e No preprocessing required

No state maintained between accesses

11.2 Space Complexity
e OracleDigest: O(k) where k = unique indices accessed
e LazyDigest: O(1) regardless of access pattern

e Hierarchical variants: O(logn) for tree depth

11.3 Cache Effects

LazyDigest has perfect cache locality—each index computation is indepen-
dent. This enables:

e Parallel generation of different indices
e GPU acceleration for bulk generation

e Distributed computation without coordination

23

12 Future Directions

12.1 Theoretical Extensions

1. Quantum resistance: How do quantum computers affect the decep-
tion?

2. Formal verification: Prove properties in Coq or Isabelle

3. Optimal constructions: What maximizes cycle length for given en-
tropy?

12.2 Practical Applications

1. Verifiable Delay Functions: Use lazy evaluation for time-lock puz-
zles

2. Succinct arguments: Prove properties about infinite sequences

3. Distributed randomness beacons: Coordinate without sharing
state

12.3 Philosophical Questions

The deeper we look, the more profound the questions become:

1. Ontological Questions:
e Are real numbers a coherent concept, or just a useful fiction we’ve
collectively agreed to?
e [s a random oracle any less coherent than the real number system
itself?
e Do mathematical objects exist independently of computation, or
only through it?

2. Computational Boundaries:

e Does the Church-Turing thesis define the boundary of mathemat-
ical existence?

e Are UTM-computable objects the only ones with “potential ex-
istence”?

e Is the set of “existing” mathematical objects precisely the com-
putable ones?

24

3. The Nature of Randomness:

e Is there a meaningful difference between “true” randomness and
computational randomness?

e If the universe is computational, is anything truly random?

e Is randommness an objective property or relative to computational
power?

4. Cryptographic Philosophy:

e Does the success of LazyDigest provide evidence for P £ NP?

e [s cryptography fundamentally about hiding information or cre-
ating computational hardness?

e If only computable objects exist, what is the ontological status
of our cryptographic “deceptions”?

5. The Constructivist Program:

e s LazyDigest more “honest” than classical real analysis?

e Should we abandon mathematical objects that cannot be imple-
mented on a UTM?

o Is applied mathematics inherently constructivist while pure math-
ematics lives in fantasy?

These aren’t just academic musings. How we answer them determines:
e What we consider valid cryptographic primitives

e How we understand security proofs

e Whether we believe true randomness is achievable or even coherent

e The foundations we accept for mathematical reasoning about compu-
tation

13 Conclusion: Embracing the Deception

We began with an impossible goal: implement a random oracle that maps
finite inputs to infinite random outputs. We showed this is impossible with
OracleDigest, which fails in every dimension—memory, persistence, repro-
ducibility, distribution.

25

But from this impossibility emerged LazyDigest, a beautiful deception
that uses just 256 bits to successfully pretend to be infinite. It’s not truly
random—it has low Kolmogorov complexity and must eventually cycle. But
to any computationally bounded observer, it’s indistinguishable from true
randomness.

This deception is not a bug or a compromise—it’s the fundamental in-
sight that makes modern cryptography possible. We don’t need true ran-
domness; we need computational hardness. We don’t need infinite informa-
tion; we need finite information that’s hard to compress. We don’t need
perfection; we need to be good enough to fool bounded adversaries.

LazyDigest teaches us that randomness is in the eye of the beholder. To
an information-theoretic observer with unlimited computation, it’s trivially
non-random. To a computational observer with bounded resources, it’s per-
fectly random. Since we’re all computational observers, the deception works.

The beauty lies not in hiding the deception but in understanding it.
We know exactly what LazyDigest is—a simple deterministic function. We
know exactly what it isn’t—a true source of randomness. And we know
exactly why it works—because distinguishing it from random is computa-
tionally hard.

13.1 Contributions Summary

This work makes several concrete contributions:

e Theoretical Framework: We clarified the distinction between information-
theoretic and computational randomness through the lens of lazy eval-
uation and codata.

e Practical Implementations: We provided elegant Python imple-
mentations of multiple LazyDigest variants, each demonstrating dif-
ferent security properties and trade-offs.

e Security Analysis: We introduced the XOR construction for algo-
rithm diversity and analyzed how combining multiple hash functions
provides defense in depth.

e Pedagogical Value: We created a teaching tool that makes abstract
cryptographic concepts tangible through working code.

¢ Kolmogorov Complexity Perspective: We analyzed random or-
acles through information theory, showing how 256 bits can simulate
unbounded entropy through computational hardness.

26

This is the beautiful deception at the heart of cryptography: we build
finite automatons that pretend to be infinite, deterministic functions that
pretend to be random, simple programs that pretend to be complex. And
as long as P # NP, the deception holds.

In the end, LazyDigest is more than a data structure or an algorithm.
It’s a lens through which we can understand the nature of randomness,
information, and computation. It shows us that in a computational universe,
perception is reality. If something appears random to all observers who
matter, then for all practical purposes, it is random.

13.2 A Constructivist Victory

Perhaps most profoundly, LazyDigest represents a victory for the con-
structivist program in mathematics. While classical mathematics struggles
with the incoherence of actual infinities and uncomputable reals, we’ve built
something better: a finite, computable object that serves all the practical
purposes of an infinite random sequence.

Consider the irony: Classical mathematics claims the real numbers “ex-
ist” despite most being uncomputable, while simultaneously claiming ran-
dom oracles “don’t exist” for the same reason. Cryptography cuts through
this confusion with brutal honesty—only what we can compute matters,
because only what we can compute can be implemented.

In this light, our “deception” is more honest than the classical mathe-
matical edifice:

e We don’t claim to have infinite objects—we have finite programs that
generate unbounded output

e We don’t pretend uncomputable things exist—we openly work with
computable approximations

e We don’t hide behind axioms about completed infinities—we build
finite machines and study their behavior

Cryptography thus forces us to be constructivists. Every cryptographic
primitive must be implementable on a real computer with finite memory
and finite time. The boundary of cryptographic possibility is precisely the
boundary of computational constructibility. We cannot encrypt with un-
computable keys, we cannot hash to infinite outputs, we cannot use true
random oracles—we can only compute.

The deception is beautiful precisely because it’s honest. We're not trying
to hide what we’re doing—we’re celebrating it. We're taking 256 bits and

27

through the alchemy of computational hardness, transforming them into
infinity. That’s not a limitation; that’s magic. But it’s constructive magic—
magic that can be implemented, executed, and verified on a Universal Turing
Machine.

In a universe that may itself be computational, LazyDigest isn’t approx-
imating some “true” random oracle that exists in a Platonic realm. It may
be as real as randomness gets. The “deception” might not be a deception
at all—it might be the only coherent way to understand randomness in a
computational cosmos.

References

[1] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. Proceedings of the 1st ACM
conference on Computer and communications security, pages 62-73,
1993.

[2] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1.
Cambridge University Press, 2001.

[3] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptogra-
phy. CRC press, 2014.

[4] Ueli Maurer. Indistinguishability of random systems. Advances in Cryp-
tology—EUROCRYPT 2002, pages 110-132, 2004.

28

	Introduction: The Impossible Oracle
	Mathematical Foundations
	Hash Functions and Random Oracles
	Kolmogorov Complexity and Information Content
	The Cycle Problem

	OracleDigest: A Constructive Proof of Impossibility
	The Four Impossibilities

	LazyDigest: The Beautiful Deception
	The Core Lie
	Why the Deception Works
	The Inevitable Cycle

	Extending the Deception: Advanced Constructions
	Hierarchical Seeding
	Sponge Construction
	Deterministic Rekeying
	Comparison of Constructions

	Mathematical Perspectives: Uncomputable Reals and Lazy Evaluation
	Random Oracles and Uncomputable Reals
	Lazy Evaluation and Mathematical Constants

	Security Pillars: Defense in Depth
	Algorithm Diversity (Defense in Depth)
	Temporal Isolation (Forward Security)
	Structural Redundancy (Hierarchical Security)
	Capacity Reservation (Sponge Security)
	Compositional Security
	The Security Philosophy

	An Algebra of Operations
	Lazy Operations (Infinite Infinite)
	Concrete Operations (Infinite Finite)

	Applications: Where the Deception Matters
	Deterministic Test Data
	Memory-Hard Key Derivation
	Blockchain Proof-of-Work

	The Philosophical Core: Randomness as Computational Hardness
	The Constructivist Challenge: Do These Objects Even Exist?
	Two Theories of Randomness
	The P = NP Bet
	The Beautiful Paradox
	Entropy, Time's Arrow, and Computational Boundedness
	The Broken Egg Principle
	Trapdoor Functions as Temporal Asymmetry
	Randomness as Computational Relativity
	The Library of Babel and the Specification Problem

	Performance Considerations
	Time Complexity
	Space Complexity
	Cache Effects

	Future Directions
	Theoretical Extensions
	Practical Applications
	Philosophical Questions

	Conclusion: Embracing the Deception
	Contributions Summary
	A Constructivist Victory

