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ABSTRACT 

 

ENCRYPTED SEARCH: ENABLING STANDARD INFORMATION RETRIEVAL 

TECHNIQUES FOR SEVERAL NEW SECURE INDEX TYPES WHILE PRESERVING 

CONFIDENTIALITY AGAINST AN ADVERSARY WITH ACCESS TO QUERY 

HISTORIES AND SECURE INDEX CONTENTS 

by 

ALEXANDER R. TOWELL 

Chairperson: Professor  Hiroshi Fujinoki 

  

Encrypted Search is a way for a client to store searchable documents on untrusted systems 

such that the untrusted system can obliviously search the documents on the client's behalf, 

i.e., the untrusted system does not know what the client is searching for nor what the 

documents contain. Several new secure index types are designed, analyzed, and 

implemented. We analyze them with respect to several performance measures: 

confidentiality, time complexity, space complexity, and search retrieval accuracy. In order to 

support rank-ordered search, the secure indexes store frequency and proximity information. 

We investigate the risk this additional information poses to confidentiality and explore ways 

to mitigate said risk. Separately, we also simulate an adversary who has access to a history 

of encrypted queries and design techniques that mitigate the risk posed by this adversary. 

KEYWORDS: (Encrypted Search, Information Leaks, Perfect Hash Filter, Query Obfuscation, 

Secure Indexes) 
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CHAPTER I 

INTRODUCTION 

Organizations are eager to take advantage of cloud storage. Cloud storage is: 

 Reliable—storage management is delegated to expertise of cloud storage provider (CSP). 

 Scalable—as storage needs change, pay more or less as needed. 

 Cost-effective—cloud storage providers are efficient (division of labor). 

 Accessible—storage can be accessed anytime and anywhere. 

 Sharable—every resource (e.g., directories, files) has a URL. 

However, a significant disadvantage to cloud storage is loss of control over confidentiality. An 

organization loses control over an unencrypted document’s confidentiality when it is hosted in the 

cloud. 

In [1], one of the earlier papers presented on Encrypted Search, the author observes that many 

individuals and organizations wish to exploit cloud storage services, but do not trust the CSP with 

their confidential data. That is, organizations trust the CSP with storage logistics but they do not 

trust the CSP with their need for confidentiality. 

The naïve solution to regaining control over confidentiality of cloud-hosted documents is achieved 

using encryption. Before a document is uploaded into the cloud, it is encrypted. Subsequently, to 

access this document, clients download it to a trusted machine and decrypt it. 

Often, the documents of interest are not known in advance. Consequently, the ability to perform 

searches over a collection of documents is needed. In the naïve solution, this entails the following 

sequence of actions: 

(1) Download the collection of encrypted documents to a trusted machine. 

(2) Decrypt the encrypted documents. 

(3) Search through the decrypted documents using any available search facility on the trusted 

machine. 

This approach breaks down if an organization has a large collection of confidential documents. It is 

both time consuming and costly in terms of transmission costs (i.e., downloading a large corpus) and 

energy costs (i.e., decryption is computationally demanding). 

The larger the collection of confidential documents, the more costly the naïve solution is. This 

inefficiency is especially evident on resource-constrained machines, e.g., smartphones with limited 

bandwidth and energy. 

What is sought is some way to allow the CSP to search the encrypted documents on behalf of 

clients, and returning only those documents relevant to client queries. Furthermore, this should be 

done without revealing the contents of documents (data confidentiality) nor the contents of client 

queries (query privacy). In other words, the CSP should be able to perform oblivious searches on 
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behalf of authorized users. Finally, the CSP should not be able to initiate meaningful searches except 

on behalf of authorized users. 

The ability to search over a collection of encrypted documents without needing to decrypt them first 

is known as Encrypted Search1. In light of the advantages of cloud storage, Encrypted Search has 

recently gained a lot of traction in the research community. 

Many solutions to this problem have been proposed. Chapter 2 describes existing work in Encrypted 

Search with attention paid to the strengths and weaknesses of various proposals. 

                                                           
1 Encrypted Search is a narrow specialization of the computationally demanding field of fully homomorphic 
encryption (FHE) [41]. 



3 
 

CHAPTER II 

REVIEW OF LITERATURE 

CONFIDENTIALITY 
The first issue to address is confidentiality and its implementation. That is, the techniques employed 

to prevent disclosing information to unauthorized parties, like a server hosting the confidential 

documents. We consider three primary approaches: compression, obfuscation, and encryption. 

Table 1 Comparison of Confidentiality Techniques 

Methods Advantages Disadvantages 

Compression 
[2], [3] 

Very space efficient. 
 
Fast and easy to implement. 
 

To serve as an obfuscator, users 
must maintain a separate symbol-
mapping table.2 
 
Serves as a substitution cipher; may 
be broken through cryptanalysis. 

Obfuscation 
[4], [5], [6] 

Effective against non-skilled 
adversaries. 
 

High insider risk. 
 
Too weak for cryptographic use. 

Encryption 
[7], [8], [9], [10], 
[11], [1], [12], [12] 

Provides strong guarantees on 
data confidentiality (assuming the 
key is kept private). 
 
Very well understood (modern 
cryptography). 

Depending on the types of 
information leaks prevented, certain 
IR operations are problematic, e.g., 
if query privacy is provided ranking 
document relevancy is difficult. 
 
Strong encryption is slow and still 
subject to information leaks. 

Compression. In [2], the idea of using a theoretically optimal Huffman [3] encoder is proposed in the 

context of information retrieval (without consideration given to the unique needs of Encrypted 

Search), where the symbols consist of words rather than letters. To obscure the contents of a 

document, one could substitute the words with Huffman codes and keep the symbol table a secret 

(which is essentially a large secret key) to serve as a weak substitution cipher. 

When combined with an inverted index (see page 8), it is reasonably space-efficient and fast. 

Unfortunately, it cannot be taken seriously; it would be too easily compromised. 

                                                           
2 Since users must already maintain a separate symbol-mapping table, they could just query this structure 
instead. 
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Obfuscation. The previous section discussed a method to obfuscate by remapping words to Huffman 

codes. In general, any symbol substitution technique may be used to obfuscate the contents of 

documents. The primary distinction between obfuscation and compression is obfuscation obscures 

the contents of documents by mapping symbols in the domain of 𝐷 to other symbols in the domain 

of 𝐷 [4] [5], whereas compression maps codes in one domain to codes in another domain (e.g., 

character strings to bit strings). 

Conceptually, there are two types of obfuscation techniques. Encoding-based transformations apply 

general rules to each symbol, e.g., remapping the character sequence "𝐴 𝐵 𝐶" to "𝐵 𝐶 𝐷" by adding 

1 to each of their ASCII codes. Alternatively, indexed-based transformations apply unique 

transformations to inputs, e.g., a one-to-one mapping from John Smith to Person 192353. 

The symbol remapping instructions—essentially a secret key—must not be disclosed to 

unauthorized parties. In general, these techniques are vulnerable to substitution cipher attacks. 

Encryption. The previously mentioned confidentiality techniques serve the same purpose: convert 

communicated information into a secret code so that unauthorized people cannot understand it. 

Cryptography is a more secure and general approach to accomplish this. 

In cryptography, the unencrypted data is called plaintext. To encrypt (convert) plaintext into an 

unintelligible format, called ciphertext, the plaintext is input into an encryption function along with a 

secret key. The inverse of the encryption function is the decryption function, which takes the 

ciphertext and a secret key (either the same key, as in symmetric encryption, or another paired 

keyed, as in asymmetric encryption), and outputs the plaintext. For each cryptographic key 𝑘 in the 

key-space (all possible keys), the encryption function maps a given plaintext 𝑐’ to a different and 

unique ciphertext 𝑐. 

𝑒𝑛𝑐𝑘(𝑐1
′) = 𝑐 ≠ 𝑒𝑛𝑐𝑘(𝑐2

′ ), 𝑐1
′ ≠ 𝑐2

′  

To decrypt 𝑐, one must not only be in possession of the decryption algorithm, but also the secret 

key, i.e., 𝑑𝑒𝑐𝑘(𝑐) = 𝑐′. In designing security, one should assume Kirchhoff’s principle, “only the 

secrecy of the key provides security.” Specifically, the cryptographic algorithm is presumably already 

known to untrusted parties and, thus, for confidentiality the secret key must be kept private. 

Without knowing the secret key, an unbroken encryption scheme requires an adversary to do a 

brute force attack over the entire key space; for a given cipher text 𝑐, iterate through all keys in the 

key space, feed the decryption function with the given key and cipher text, and decide on the 

plausibility of the decoded plaintext 𝑐’. For example: 

candidate key 𝑘 = argmax
𝑘∈𝑘𝑒𝑦𝑠𝑝𝑎𝑐𝑒

likelihood(𝑑𝑒𝑐𝑘(𝑐)), 

where likelihood uses some language model to estimate the likelihood of the decoded ciphertext 

𝑐′ = 𝑑𝑒𝑐𝑘(𝑐). To make brute force attacks intractable, the key-space must be extremely large. 
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Symmetric encryption. In the context of Encrypted Search, two different types of encryption have 

been used, symmetric encryption and asymmetric (public-key) encryption. Symmetric encryption 

uses a single key for both encryption and decryption. Compared to public key encryption, it is less 

computationally demanding. However, the downside is, a secure channel must be used to 

communicate the secret key if multiple parties need to be able to use it. The earliest examples of 

Encrypted Search used symmetric encryption [7] [1]. 

Public-key encryption (asymmetric encryption). Boneh [13] proposed an Encrypted Search scheme 

based on public-key encryption. Using public key encryption addresses a weakness found in earlier 

proposals. In symmetric encryption, if 𝐵𝑜𝑏 wishes to make it so that 𝐴𝑙𝑖𝑐𝑒 can search a confidential 

document, they must first agree on a secret key. The problem with this approach is, how do they 

agree on a key without revealing it to others? In public-key encryption schemes, no such problem 

arises: he may use her public key. Thus, only 𝐴𝑙𝑖𝑐𝑒, who has the corresponding private key, may 

search the confidential document3.  

One-way cryptographic hash functions (trapdoors). In a secure index (see offline searching), which is 

independent of the document it represents, there is no need (nor desire) to be able to reconstruct 

the document from the information in the index. This particular relaxation offers a more attractive 

option: do not use a decipherable encryption scheme at all. Rather, use a one-way hash function 

[14] [15], ideally something that approximates a random oracle, and “filter” [16] the document 

(plaintext) through it, e.g., insert the one-way hash of each word in the document into the secure 

index. These one-way hashes are known as trapdoors—easy to compute and very difficult (if not 

impossible) to invert. 

In theory, it is nearly impossible to determine which terms a document contains simply by looking at 

the secure index since the trapdoors are practically one-way. Indeed, in many constructions, they 

are truly one-way (non-invertible), e.g., multiple terms may map to the same cryptographic hash 

value (collision). In this case, it is impossible to determine, with certainty, which terms the 

document contains. 

There are compelling advantages to this approach. First, it is far less computationally demanding; 

evaluating a one-way hash is far less computationally demanding than executing a decipherable 

encryption scheme. Second, because one-way hash functions are non-invertible and pre-image 

resistant4, even if the secret keys are disclosed to unauthorized users, this does not necessarily 

compromise the contents of the actual document (except by allowing whatever search facilities the 

secure index permits). 

Note that one or more secret keys, as with encryption, may be used to manage search authorization 

and to mitigate pre-image attacks (the secrets serve as hash salts). 

                                                           
3 In this naïve scheme, only 𝐴𝑙𝑖𝑐𝑒 can search the encrypted document; in more sophisticated approaches, 
multi-user encrypted searching schemes are possible. 
4 Given a hash, it should be difficult to find an input for the hash function that outputs the given hash. 



6 
 

INFORMATION LEAKS 
Goh [16] contends that Encrypted Search should not reveal any information about the contents of 

confidential documents unless one or more secrets are known. Furthermore, if such secrets are 

known, the only information that should be revealed is approximate knowledge about whether a 

given document is relevant5 to given query. Thus, even if an untrusted party—like the CSP—

examines a hidden search query, it should neither be able to determine the contents of the query 

nor the contents of the document, affording both data confidentiality and query privacy6. 

Most Encrypted Search schemes [16] [1] [13] [17] have this as the primary objective, but only a few 

solutions [18] considered maintaining this objective in the presence of a determined adversary who 

has access to user activity histories, e.g., hidden query histories. 

There are many different and subtle ways information can be disclosed—or leaked. This remains 

true even if we assume an unbreakable encryption scheme is being used. 

Document confidentiality. Even if a strong cryptographic scheme is being used, information may still 

be leaked. Consider the following. For each document in the collection, the words in a given 

document are passed through a one-way hash and that hash is directly inserted into the index. Since 

this is a substitution cipher for small blocks (words), it is vulnerable to substitution cipher attacks. 

For instance, since it is likely word frequencies in the confidential corpus are similar to the word 

frequencies found in other corpora, statistical frequency analysis can be used to construct probable 

cipher string to plaintext word mappings. For reasons similar to this, Goh [16] argued traditional 

hash tables are not suitable for use as secure indexes. However, on page 37 we construct a 

theoretical adversary that may be able achieve reasonable success at compromising any secure 

index, emphasizing the need for high false positive rates and secure index poisoning. 

Query privacy. The same argument for data confidentiality also applies to query privacy. In the 

extreme case, queries may be sent in plaintext, and thus no query privacy is afforded. Thus, an 

adversary can determine what users are interested in and which documents are relevant to a given 

query. For example, the adversary may construct a model of an encrypted document by taking a set 

plaintext queries and observing its relevance to each of them—in the case of Boolean search, does it 

contain this keyword? Thus, it is vulnerable to basic dictionary attacks. Indeed, they may be 

successful at reconstructing close approximations of the contents of confidential documents if 

phrase searching is supported. 

A simple solution is to cryptographically hash each term in a query, as elaborated on page 5. 

However, since it is reasonable to assume the hash algorithm will be known to adversaries, they 

may proceed the same as before. Thus, each hash term should be concatenated with one or more 

secret keys. As long as the keys are kept secret, only authorized users may meaningfully submit 

queries to the secure index. However, note that if a cryptographic query for a specific term always 

looks the same, then an adversary may slowly build up a frequency table of cryptographic hashes by 

observing query histories and use this information to mount a substitution cipher attack. For 

                                                           
5 Note that the reference to a confidential document can be encrypted to prevent disclosing information 
about the contents of the document based on its filename. 
6 Encrypted Search schemes that protect against document confidentiality leaks, query privacy leaks, and 
access pattern leaks may also be used to enable plausible deniability, especially if hash collisions (see page 34) 
are probable. 
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example, using a frequency table of plaintext English words, an adversary may be able to determine 

an accurate mapping from cryptographic hashes to plaintext English words. In our research, we will 

explore practical methods to mitigate the risk posed by such an adversary. 

Access patterns and implicit information. To exacerbate matters, even if an Encrypted Search scheme 

provides robust data confidentiality and query privacy, access patterns may still leak information. 

For instance, what is the distribution of (encrypted) documents a user has retrieved over time? 

Users may show interest in different documents, in which case statistical clustering may reveal 

associations among users. 

Implicit information may also be leaked. For example, if a hidden query is followed by another 

action, like checking stock prices, this correlation may be used to infer properties about the query 

and the corresponding documents that are returned in response to it. To mitigate implicit 

information disclosure related to a user’s Encrypted Search activities, Pinkas [18] proposed the use 

of Oblivious RAM. 

ONLINE AND OFFLINE SEARCHING 
Table 2 Online Searching vs Offline Searching 

Online searching. Online search performs a sequential search on the document cipher [1]. To be able 

to perform encrypted searches on such a cipher, a large block cipher may not be used; rather, each 

searchable term must be encrypted separately to facilitate exact string matches on the encrypted 

query terms. Thus, this is an easily compromised substitution cipher.  

Moreover, as pointed out in [17], proposals based on online searching, in light of their linear time 

complexity, are not appropriate except in limited contexts. For example, they may be appropriate if 

the purpose is to allow an email server to obliviously scan the “subject” field of incoming emails for 

the keyword “urgent.” 

Methods Advantages Disadvantages 

Online 
[7], [10], 
[11], [1] 

Exact phrase matching is easy—does 
not increase size like in other solutions. 
 
Reasonably space-efficient (if combined 
with Huffman coding). 

Very vulnerable to substitution cipher 
attacks. 
 
Sequential search—impractically slow for 
large-scale use. 

Offline: 
Inverted 
index 
[8], [2] 

Efficiently supports query operations 
necessary for rank-ordered search. 
 
Reasonably fast trapdoor lookups—
𝑂(𝑙𝑜𝑔 𝑛) for a document with 𝑛 words. 
 
Reasonably space-efficient (if using 
Huffman coding). 

Very vulnerable to substitution cipher 
attacks. 
 
Potentially vulnerable to preimage attacks. 
 

Off-line: 
Bloom 
filter 
[16], [19] 

Space efficient (nearly optimal)—can 
trade accuracy for space-complexity. 
 
Reasonably fast trapdoor lookups. 

𝑘 hash functions must be evaluated per 
trapdoor (per query term). 
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Offline (index) searching. Offline indexes are data structures that store a representation of the 

document (or documents) in which rapid, efficient retrieval is facilitated. Most of the recently 

proposed Encrypted Search constructions are based on offline indexes [16] [19] like Bloom filters. An 

overview of offline-based solutions can be found in [13]. 

Inverted index. In [2], a possible approach to a secure index is given in the form of an inverted index. 

Previously, the inverted index was discussed in the context of using Huffman codes to serve as an 

efficient but non-secure (easily compromised through frequency analysis) substitution cipher. 

The reason the Inverted index reduces to a substitution cipher is related to the way in which 

searching is performed—that is, a binary search on a sorted array of terms. Each element in the 

array must (nearly) uniquely identify a single term. Thus, even if encrypted, compressed, or 

obfuscated transformations of terms are stored in the index, it still amounts to uniquely substituting 

each term with some transformation of that term. This makes it susceptible to cryptanalysis (e.g., 

frequency analysis) and pre-image attacks.  Despite the popularity of the inverted index in 

information retrieval, its vulnerability to cryptanalysis makes it an unsuitable choice for a secure 

index. 

Bloom filter. A Bloom filter [20] is a probabilistic (approximate) set in which false positives on 

membership tests are possible. While it does not possess the theoretical optimal space efficiency of 

𝑛 log2
1

𝜀
  bits for a set with a false positive rate 𝜀 and 𝑛 members, it is still reasonably space efficient 

requiring only 1.44𝑛 log2
1

𝜀
 bits. 

Operationally, it consists of a bit vector of size 𝑚 (all initially set to 0) and 𝑘 hash functions. For each 

member, use the 𝑘 hash functions to map it to 𝑘 (possibly non-unique) indexes in the bit vector, 

setting each mapped bit to 1. 

To verify an element is a member of the set, check to see if each of its 𝑘 hash positions is set to 1. 

On the one hand, If any are 0, then it is certainly not a member (false negatives are not possible). On 

the other hand, if all of them are set to 1, we assume it is a member with a false positive rate 𝜀. That 

is, one or more actual members may have caused those 𝑘 bit positions to be set to 1. 

It is straightforward to construct a secure index from a Bloom filter. For each term in the document 

(words, n-grams, or other searchable terms), insert it into the filter. To prevent unauthorized users 

from querying the index, do not insert the plaintext terms; rather, insert some transformation of 

them. Ideally, a trapdoor will be used, which is just a one-way (cryptographic) hash function applied 

to each term concatenated with one or more secrets, e.g., 

𝑖𝑛𝑠𝑒𝑟𝑡(𝑏𝑙𝑜𝑜𝑚𝑓𝑖𝑙𝑡𝑒𝑟, ℎ𝑎𝑠ℎ(𝑡𝑒𝑟𝑚𝑎| 𝑠𝑒𝑐𝑟𝑒𝑡)). 

To harden the Bloom filter from cryptanalysis, the same term in separate documents ought to map 

to different index positions in the Bloom filter. In [16], it is recommended that the document id be 

appended to the trapdoors during the construction of the secure index, e.g., 

𝑖𝑛𝑠𝑒𝑟𝑡(𝑏𝑙𝑜𝑜𝑚𝑓𝑖𝑙𝑡𝑒𝑟, ℎ𝑎𝑠ℎ2(ℎ𝑎𝑠ℎ1(𝑡𝑒𝑟𝑚𝑎| 𝑠𝑒𝑐𝑟𝑒𝑡) | 𝑑𝑜𝑐_𝑖𝑑). Likewise, during the construction of 

hidden queries (which consist of trapdoors), the user must apply the same transformations. Since 

𝑠𝑒𝑐𝑟𝑒𝑡 is unknown to unauthorized parties, like the server, they are unable to meaningfully query 

the secure index. 



9 
 

Problems with the Bloom filter. However, there is a notable problem with secure indexes based on 

Bloom filters: they need to evaluate 𝑘 hash functions per trapdoor, where 𝑘= log2
1

𝜀
. For large 

corpora consisting of 𝑁 documents, this could be a significant drawback, requiring 𝑂(𝑁𝑘) hashes 

per trapdoor. 

Another problem with them, as previously described, is they do not efficiently support multiplicities 

(multi-sets) nor do they efficiently support other types of queries, e.g., where is a member located? 

This complicates scoring functions like term weighting and proximity weighting. 

MAPPING QUERIES TO DOCUMENTS 
The method in which a query is mapped to (or ranked according by) a set of documents is a very 

important topic in information retrieval, but it is often neglected in Encrypted Search. There are two 

primary ways to perform this mapping function: Boolean keyword searching or ranking documents 

according to their relevancy to a given query. 

Table 3 Boolean Search vs Rank-ordered Search 

Definition of a query. A query represents an information need. In practice, it is a string of terms, 

where a term is either a keyword or an exact phrase surrounded by quotes. In BNF notation, the 

syntax for a query is: 

<query> 
<term> 

<exact_phrase> 
<keywords> 
<keyword> 

<alphanumeric> 

∷= 
∷= 
∷= 
∷= 
∷= 
∷= 

<term> | <term> <query> 
<exact_phrase> | <keyword> 
"<keywords>" 
<keyword> | <keyword> <keywords> 
<alphanumeric><keyword> | <alphanumeric> 
a|b|…|z|0|1|…|9 

Table 4 BNF Query Grammar 

Consider the following query: 

volunteer “doctors without borders” 

This query consists of two terms: the keyword volunteer and the exact phrase doctors without 

borders. When conducting a search on a collection of secure indexes, it will look for that exact 

Methods Advantages Disadvantages 

Boolean 
keyword 
search 
[7], [11], [1], 
[13], [21], [22] 
[23] 

Simple. 
 
Fast queries. 
 

Documents are either relevant or irrelevant to a query 
(no degree of relevancy), so recall and precision suffer. 

Rank-ordered 
search 
[24], [25], [26], 
[27], [28], [17] 

Much better 
precision and recall 
on results. 
 
Draws from 
extensive research 
in the IR community. 

Answering queries is more computationally demanding 
(this may especially important in the context of cloud 
computing, where every second of CPU time is charged). 
 
More information about documents must be leaked to 
support degrees of relevancy. 
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phrase and keyword. It will not count doctors with borders as a hit since the phrase must exactly 

match7. 

To support exact phrase searching, a secure index may store both the unigrams (keywords) and 

bigrams found in the document it represents. Any query with an exact phrase consisting of more 

than two keywords may then be converted into a chain of bigrams (the biword model, page 12). 

Boolean search. Encrypted Boolean search [1] looks for a particular word or words [13] in a set of 

documents. In Boolean search, a document is either considered relevant (e.g., contains all of the 

terms in the query) or is considered non-relevant to a given query. 

In addition, while there are some Boolean search techniques that allow for approximate matches or 

are tolerant of errors (like typographical errors), most encrypted search techniques must still rely 

upon some form of exact string matching due to the way the words in documents are transformed 

(for confidentiality) using one-way hash functions (trapdoors). This need for confidentiality 

complicates many standard information retrieval techniques. 

For example, if tolerance of typographical errors is desired (as measured by edit distance, see page 

11), the Levenshtein distance algorithm may be used in non-encrypted searching. However, since 

the words in a document are cryptographically hashed, this algorithm is useless (i.e., two words with 

an edit distance of 1 should hash to completely different strings). The solution proposed by Li [11] 

addresses tolerance of typographical errors by pre-computing and including all error patterns up to 

𝑘 errors directly in the index8, upon which simple exact string matching may thus be performed. 

Conjunctive keyword search. In [7], the authors propose a system which permits secure conjunctive 

queries for certain keywords on a given set of fields, like the “From” field in an email. By secure, 

they mean that given access to a set of indexes for encrypted documents and a freely chosen set of 

encrypted keywords (trapdoors), adversaries—like an untrusted cloud storage provider—must not 

be able to learn anything about the encrypted documents except whether it matches those specific 

trapdoors. 

Their work demonstrates a slight improvement over the single keyword searching discussed in [9], 

but their solution is still rather limited. First, they still only perform exact string matching. Second, 

their solution inflexibly requires the document creator to tag specific keyword fields for search-

ability9. Finally, like most other solutions, they do not consider untrusted parties that consider 

historical data [18]. 

                                                           
7 Unless approximate searching or error tolerance is allowed (see page 11). 
8 Given the space complexity of this approach, it may be more useful to include only probable typographical 
errors. 
9 Moreover, these field names—although not the actual values—are revealed to adversaries (information 
leak). 



11 
 

Approximate search. In [12], the authors point out that Google’s primary problem is finding ways to 

return fewer, more relevant results so that users do not have to sift through too many pages (many 

users only check the first page of results) even if this reduces the recall of the system. Thus, Google 

is motivated to improve the precision at potentially significant cost to recall (see page 30 for a 

discussion on precision and recall). 

However, in vertical search— such as Encrypted Search facilities on a store of confidential enterprise 

documents—there is far more concern over not missing or overlooking relevant documents since 

there may be so few relevant results to begin with. That is, unlike Google, recall is equally if not 

more important than precision. To this end, various techniques—like approximate keyword 

matching—may be used to increase the recall. 

Locality-sensitive hashing. In locality sensitive hashing, the notion is to map similar (according to some 

distance measure) items to the same hash. This is an especially good fit in the context of Encrypted 

Search since, typically, only exact matches on hash strings are possible. 

To avoid the curse of dimensionality, locality-sensitive hash functions may be used as a form of 

dimensionality reduction [29]; that is, use hash functions in which the probability of a collision is 

high for close (according to some distance measure) elements and low otherwise. Thus, LSH 

functions are not at all like most hash functions; most hash functions are designed to minimize the 

probability of collisions, but LSH hashes are designed to maximize certain kinds of collisions. 

For instance, in [30] the authors observe that Bloom filters generally assume the use of hash 

functions that uniformly distribute over their domains. However, if this requirement is relaxed, then 

locality-sensitive hash functions may be chosen such that input that is close to actual members (in 

the Bloom filter) will tend to hash to the same values and thus test as positive. 

Stemming. Stemming may be thought of as another form of locality sensitive hashing. In stemming, 

morphological variations of a word are mapped to a single base form. By reducing such variations to 

a single form, in which the different variations have the same essential meaning, recall and precision 

may both be improved. 

For example, if a user searches for “computing grades”, it would seem the user would find 

“computed grade” relevant also. By not including this variation in the result set, recall and 

potentially precision suffer: recall suffers because relevant documents will be overlooked, and 

precision may suffer because less relevant documents may be returned in their place. Stemming has 

demonstrated itself to be a fast and effective technique to improve precision and recall. [31] 

Phonetic algorithms. Phonetic algorithms are another form of locality sensitive hashing. The notion is 

to map words that sound alike to the same hash. Soundex is one of the more popular examples of 

this; it is an especially useful trick for approximate matches on the names of people. 

Edit distance. In [11], a mechanism is proposed to address the limitation in which only exact matches 

on keywords are performed. In particular, they propose a construction that allows for matches on 

typographical errors or typical spelling variations, e.g., 𝑐𝑜𝑙𝑜𝑟 versus 𝑐𝑜𝑙𝑜𝑢𝑟. 

To accomplish this, when constructing the secure index, for each term in the document, add all 𝑘-

edit distance patterns, where an edit is an insertion, deletion, or substitution of a character. For 

example, for a 1-edit error tolerance, the keyword 𝑎𝑔𝑒 is expanded to {𝑎𝑔𝑒,∗ 𝑎𝑔𝑒, 𝑎 ∗ 𝑔𝑒, 𝑎𝑔 ∗
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𝑒, 𝑎𝑔𝑒 ∗,∗ 𝑔𝑒, 𝑎 ∗ 𝑒, 𝑎𝑔 ∗}, where ∗ represents any character (wild-card). Thus, if 𝑎𝑔𝑒 fails to match, 

the query can be automatically expanded to each of those variations in turn until a match is found. 

Wild-card matching. Wild-card [32] searches can be quite useful. For example, if users are uncertain 

about how to spell a particular word, they can use wildcards to represent their ignorance, e.g., 

instead of “tomorrow”, they may type “to*row”. Or, as another example, the user may seek 

multiple variations of a word, e.g., “*night” for “night” or “knight”. The solution proposed in [11] on 

edit distance may be repurposed to implement wildcard searching. 

Exact phrase matching (word n-grams). Phrase searches consist of approximately 10% of web search 

queries, but many Encrypted Search schemes only allow matches on keywords. In [33] a method for 

secure exact phrase matching is considered. Unfortunately, clients must maintain a local dictionary 

on their computers to facilitate the capability. As long as such data must be maintained locally to 

perform searches, one may reasonably argue that local searchable indexes should be maintained 

instead. Local indexes, freed from many of the security concerns, would permit any sort of search 

operation without the need to communicate with the server until a specific document is desired. 

Biword model. As long as an index supports bigram queries, any exact phrase search may be 

approximated as a series of bigram Boolean queries. This is known as the biword [26]  model. For 

example, to find the exact phrase, hello dr fujinoki, perform a Boolean search for the bigrams, hello 

dr and dr fujinoki. This allows for false positive, as this search will also match any document in which 

hello dr and dr fujinoki are present but non-adjacent to each other. 

Rank-ordered search -- degrees of relevancy. As pointed out in [17], most Encrypted Search research 

focuses on Boolean search, where a document is either relevant or non-relevant to a given query—

that is, there are no degrees of relevancy. For instance, a Boolean search may consider a document 

a match—that is, relevant—if and only if all of the terms in the query are matched in the document. 

This poses a number of problems with respect to precision and recall. The results in this paper 

represent an important advance over prior encrypted searching schemes in that it rank-orders 

documents according to some measure of their degree of relevancy to a given query. 

In modern information retrieval systems, scoring the relevancy of a document to a query is one of its 

most important functions. If standard scoring techniques can be employed in Encrypted Search, its 

utility could be significantly improved. However, in Encrypted Search, a server obliviously searches 

over a collection of encrypted documents. The server’s ignorance (which is needed to preserve 

confidentiality—i.e., confidentiality of queries and documents) complicate many traditional scoring 

techniques. 

For instance, a vector-space model is commonly used in which documents are represented as unit 

vectors, where each dimension of the vector corresponds to a term’s normalized tf-idf weight (see 

page 13). With this representation, an efficient similarity measure between two documents (or 

between a document and a vectorized query) is the cosine similarity10 [34] measure. However, in 

Encrypted Search, the terms in a document should not be known a priori. Rather, such information 

should only be approximately learned through user submitted queries (and only in terms of 

                                                           
10 cosine_similarity(𝑑1, 𝑑2) = �⃗�(𝑑1) ∙ �⃗�(𝑑2), where �⃗�(𝑑𝑖) is the unit vectorized representation of document 
𝑑𝑖. 
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trapdoors—cryptographic one-way hashes). Thus, documents may only be modeled using this more 

limited information11. 

In this paper, we will explore other more compatible measures, e.g., instead of cosine similarity one 

can score the relevancy of a document only with respect to the terms in the query, e.g., a simple 

summation. 

Term importance weighting. Term (keyword) weighting [27] is based on two fundamental insights. 

First, some of the terms in a query will occur more frequently in one document compared to 

another document. When scoring the relevancy of documents 𝐴 and 𝐵 to a query term 𝑡, if 𝑡 

appears more frequently in 𝐴 than 𝐵 then 𝐴 should be considered more relevant all other things 

being equal. 

tf𝑤𝑒𝑖𝑔ℎ𝑡(𝑡, 𝑑) = 𝑓(frequency of term 𝑡 in document 𝑑), 

where 𝑓 is a monotonically increasing function with respect to 𝑡 (e.g., the identify function). 

The second insight is that some of the terms in the query will be in a larger proportion of the 

documents in the corpus. These terms, therefore, carry less meaning—that is, they have less 

discriminatory power since they appear in a larger fraction of the documents. Conversely, some of 

the terms in the query will be very rare or even unique in a corpus, and thus they have more 

discriminatory power. 

For example, the term “the” is in nearly every document—it serves as linguistic glue— but the term 

“acatalepsy” is in very few documents. The more discriminatory power a term has, the more weight 

it should be given when scoring a document’s relevancy to the query. 

df𝑤𝑒𝑖𝑔ℎ𝑡(𝑡, 𝐷) =  𝑔(number of documents in 𝐷 containing 𝑡), 

where 𝑔 is a monotonically decreasing function with respect to 𝑡 (e.g., the log of the inverse). 

Combining both of these insights, a measure that is sensitive to both of the rarity of a term in a 

corpus and the frequency of a term in an individual document may be devised. 

tf_df𝑤𝑒𝑖𝑔ℎ𝑡(𝑡, 𝑑, 𝐷) = ℎ (tf𝑤𝑒𝑖𝑔ℎ𝑡(𝑡, 𝑑), df𝑤𝑒𝑖𝑔ℎ𝑡(𝑡, 𝐷)), 

where 
𝜕ℎ

𝜕𝑡𝑓𝑤𝑒𝑖𝑔ℎ𝑡
≥ 0 and 

𝜕ℎ

𝜕𝑑𝑓𝑤𝑒𝑖𝑔ℎ𝑡
≥ 0, e.g., a function that takes the product of the two inputs. 

The tf-idf term weighting heuristic. A notable example of a term weighting heuristic is tf-idf and its 

variants. The tf-idf heuristic—term frequency, inverse document frequency—accounts for both the 

term frequency within a document and the inverse document frequency within a document 

collection when estimating the importance of a term: 

df𝑤𝑒𝑖𝑔ℎ𝑡(𝑡, 𝐷) = idf(𝑡, 𝐷) = log(
‖𝐷‖

‖{𝑡 ∈ 𝑑, 𝑑 ∈ 𝐷}‖
) 

tf𝑤𝑒𝑖𝑔ℎ𝑡(𝑡, 𝑑) = 𝑓(𝑡, 𝑑) = raw frequency of term 𝑡 in 𝑑 

                                                           
11 The untrusted server could store the results of queries to learn more about the contents of documents over 
time, but this information should be both approximate (e.g., false positives on terms existing in documents) 
and  incomplete. See chapter 0 for more information. 
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tf_df𝑤𝑒𝑖𝑔ℎ𝑡 = tf_idf(𝑡, 𝑑, 𝐷) = idf(𝑡, 𝐷) × 𝑓(𝑡, 𝑑) 

Term proximity weighting. In [35], the importance of proximity of terms in keyword searches is 

considered. The fundamental principle can be demonstrated by considering the following: given two 

documents, doc1 = A B C and doc2 = A D D D B C, doc1 should be more relevant than doc2 for the 

query 𝑄 = {𝐴, 𝐵} even though they both contain keywords A and B with the same frequency. Put 

simply, all other things being equal, the closer the query’s terms are in a document, the more 

relevant the match. 

Semantic search. In [25], the authors maintain that most search techniques—from simple Boolean 

search to vector-space tf-idf weighted scoring—are variations of syntactic search in which some 

form of string matching is performed combined with a method to estimate how important particular 

string matches are. 

There are two major problems with the syntactic approach. First, different terms may be used to 

express similar meanings (depending on the context). This is referred to as synonymy. Second, the 

same term may be used to express different meanings (depending on the context). This is referred 

to as polysemy. Both of these problems may degrade recall and precision of search results. 

Semantic search attempts to mitigate these problems by modeling the meaning of text, with the aim 

of more intelligently mapping an information need—as represented by a query—to a set relevant 

rank-ordered list of documents that satisfy the information need, e.g., does the meaning of the 

query correspond to any similar meanings in a document? 

Modeling semantics is a more complicated problem than string matching. It may involve natural 

language processing to perform word-sense disambiguation, part of speech tagging, and named 

entity recognition. When combining this with ontological and semantic knowledge, the information 

retrieval system may begin to process search queries in a way that resembles a human's ability to 

understand the meaning of text. 

There are also statistical techniques to model semantically related terms, like latent semantic 

indexing (LSI). There has been very little progress on either of these fronts in relation to Encrypted 

Search12. 

                                                           
12 Semantic search in the context of Encrypted Search may have an additional advantage: remove as many 
specifics as possible from the secure index but include its more general concepts. This may both improve 
relevancy of search results while erasing potentially compromising specifics. 
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CHAPTER III 

RESEARCH OBJECTIVES 

Our research will seek to contribute to Encrypted Search in three different ways. First, we propose 

several different secure indexes based on a probabilistic set similar to the Bloom filter, which we call 

the Perfect Hash Filter [36]. We compare them against each other, and against a secure index based 

on the popular Bloom filter data structure. 

Second, we will explore the use of standard information retrieval scoring techniques while paying 

attention to confidentiality concerns. Specifically, in our experiments, we will assess the accuracy of 

various proposed secure indexes on different scoring techniques. This accuracy will be assessed with 

respect to the level of uncertainty (e.g., term location uncertainty), false positive rate, and secure 

index poisoning. The accuracy of a secure index’s output will be measured with respect to a 

canonical index with perfect information implementing the same search criteria. 

Finally, we will consider various ways in which information is leaked, and design and implement 

solutions to mitigate these leaks. We evaluate the effectiveness of these mitigation strategies by 

considering a hypothetical adversary who employs various attack strategies. We do this for both 

document confidentiality and query privacy. 

SECURE INDEXES 
Encrypted Search is facilitated by the concept of a secure index. Secure indexes are offline indexes. 

To make a confidential document searchable, a user must first construct a secure index for it (see 

page 17).  

Submitting hidden queries to secure indexes. Assuming the secure indexes for a collection of 

confidential documents have been constructed and transmitted to the CSP, Encrypted Search 

proceeds as follows. Refer to Figure 1 for a visualization of the steps. 

(1) Clients construct queries to find confidential documents relevant to their information needs. 

Queries will be sent over a secure channel to the query processor. 

(2) First, the query processor concatenates a secret to each term. Second, it feeds each 

concatenated term into a one-way hash function. Finally, it generates an intermediate 

hidden query from the output of the one-way hash function and transmits the result to a 

proxy query processor. See page 16 for the definition of a hidden query. 

(3) The proxy query processor concatenates a secret to each term in the intermediate hidden 

query with another secret and transmits the resulting hidden query transformation to the 

CSP. Note that the proxy only observes intermediate hidden queries (it does not know what 

the client is searching for), thus the proxy need not be fully trusted. 

(4) The CSP iterates through the secure indexes in the DB, hashing each hidden term with the 

concatenation of the document ID (a reference, e.g., URIs), and performs the requested 

search function (e.g., rank-orders document IDs with respect to BM25). 
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(5) The CSP returns the top-k results13. 

 

Definition of a hidden query. A hidden query is a cryptographic transformation of a query (see page 9 

for the definition of a query). Each term is converted into a hidden term; that is, each keyword is 

converted into a trapdoor using secret 𝑠 ∈ 𝑠𝑒𝑐𝑟𝑒𝑡𝑠, i.e., 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 → "ℎ𝑎𝑠ℎ(𝑘𝑒𝑦𝑤𝑜𝑟𝑑|𝑠)", where 

the hash function is a cryptographic hash function that outputs 𝑁 = 16 hexadecimal digits for any 

input string (term). 

Our secure indexes only store the unigrams (keywords) and bigrams found in the documents they 

represent; any query with an exact phrase consisting of more than two keywords must be converted 

into a list of bigrams (a biword model). Thus, each exact phrase is converted into a list of trapdoors 

on the bigrams in the phrase, i.e., “𝑤𝑜𝑟𝑑1 𝑤𝑜𝑟𝑑2 𝑤𝑜𝑟𝑑3…  𝑤𝑜𝑟𝑑𝑘” → "ℎ𝑎𝑠ℎ(𝑤𝑜𝑟𝑑1|𝑤𝑜𝑟𝑑2|𝑠 ∈

𝑠𝑒𝑐𝑟𝑒𝑡𝑠)", "ℎ𝑎𝑠ℎ(𝑤𝑜𝑟𝑑2|𝑤𝑜𝑟𝑑3|𝑠 ∈ 𝑠𝑒𝑐𝑟𝑒𝑡𝑠), … , "ℎ𝑎𝑠ℎ(𝑤𝑜𝑟𝑑𝑘−1|𝑤𝑜𝑟𝑑𝑘|𝑠 ∈ 𝑠𝑒𝑐𝑟𝑒𝑡𝑠)". 

In BNF notation, the syntax14 for a hidden query is: 

<hidden_query> 
<hidden_terms> 
<hidden_term> 
<trapdoors> 
<trapdoor> 

∷= 
∷= 
∷= 
∷= 
∷= 

{"hidden_query": [<hidden_terms>]} 
<hidden_term> | <hidden_term>, <hidden_terms> 
[<trapdoors>] 
"<trapdoor>" | "<trapdoor>", <trapdoors> 
(0|1|…|9|a|b|c|d|e|f){16} 

Table 5 BNF Hidden Query Grammar 

                                                           
13 To avoid leaking information about specific user access patterns, the results can return through the same 
path the query took to get to the CSP. 
14 Note that this BNB grammar generates valid JSON. 

Figure 1 Overview of Encrypted Search on a Secure Index Database 
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Secure index construction. What follows is the sequence of actions needed to construct a secure 

index. Once constructed, the secure index may be stored on untrusted systems, such as a CSP. Refer 

to Figure 2 for a visualization of the steps. 

(1) A client transmits a confidential plaintext document over a secure channel to a 

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟. This is most likely a process running on the client’s local machine, 

but in theory, it can reside anywhere. There are compelling reasons to decouple the 

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 from the client, e.g., centralized control to enforce uniformity of 

secure index construction. 

(2) Optional: The document processor encrypts the document using whatever cryptographic 

algorithm is deemed appropriate and transmits it to an untrusted channel, e.g., the CSP or a 

system decoupled from the CSP. For Encrypted Search purposes, only a reference to the 

document needs to be provided as output. 

(3) First, the document processor generates searchable terms for the document. These terms 

can be anything—Soundex hashes, trigrams, etc.—but in our implementation they are 

lower-case unigrams and bigrams (optionally stemmed) contained in the document (biword 

model). Second, the concatenations are fed into a cryptographic one-way hash function. 

Finally, it generates a list of hidden terms from the output of the one-way hash function and 

transmits the intermediate results to a proxy indexer. 

More precisely, each unigram or bigram 𝑠𝑖 in the target document 𝐷 is 

concatenated with 𝑛1 secrets—𝑠′𝑖,𝑗 = 𝑠𝑖 + 𝑠𝑒𝑐𝑟𝑒𝑡𝑗, 𝑖 = 1 𝑡𝑜 |𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠 ∈ 𝐷 ∪

𝑏𝑖𝑔𝑟𝑎𝑚𝑠 ∈ 𝐷|, 𝑗 = 1 𝑡𝑜 𝑛1. Every unigram and bigram in the document will thus be 

Figure 2 Overview of Secure Index Construction 
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searchable with 𝑛1 different secrets by an authorized user. Then, each 𝑠′𝑖,𝑗 is 

cryptographically hashed—𝑠′′𝑖,𝑗 = 𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐_ℎ𝑎𝑠ℎ(𝑠
′
𝑖,𝑗)

15 

(4) First, the proxy indexer concatenates one or more secrets to the intermediate hidden 

terms and feeds them into a one-way hash function. Second, the proxy concatenates the 

document’s id (reference) to the outputs of the previous hash function and feeds them 

into another one-way hash. Third, a secure index is constructed from the hash function’s 

output. Finally, it transmits the secure index to the CSP. At this point, the CSP stores the 

secure index and, optionally, its corresponding encrypted document in a database to 

facilitate efficient Encrypted Search operations in response to hidden queries. 

More precisely, each 𝑠′′𝑖,𝑗 is concatenated with 𝑛2 secrets—𝑠′′′𝑖,𝑗,𝑘 = 𝑠
′′
𝑖,𝑗 +

𝑠𝑒𝑐𝑟𝑒𝑡𝑘, 𝑗 = 1 𝑡𝑜 𝑛1, 𝑘 = 1 𝑡𝑜 𝑛2. Every unigram and bigram in the document will 

thus be searchable with 𝑛1𝑛2 different combination of secrets. Then, each 𝑠′′′𝑖,𝑗,𝑘 is 

concatenated with the document’s identifier (e.g., hash of its filename) and is then 

re-hashed—𝑠′′′′𝑖,𝑗,𝑘 = ℎ𝑎𝑠ℎ16(𝑠′′′
𝑖,𝑗,𝑘

+ 𝑑𝑜𝑐_𝑖𝑑) = trapdoor for 𝑠𝑖 in the 

𝑠𝑒𝑐𝑢𝑟𝑒 𝑖𝑛𝑑𝑒𝑥 representing 𝑑𝑜𝑐_𝑖𝑑. Note that the final rehashing step is performed 

to prevent the same cryptographically hashed term in different documents from 

mapping to the same hash value17. Finally, the trapdoors 𝑠′′′′𝑖,𝑗,𝑘 are fed into the 

proxy indexer’s secure index constructor to build a secure index and the result is 

sent to the CSP. 

User revocation. In [37], the authors observe that most Encrypted Search implementations assume 

only one user will perform searches; or, if multiple users, then they share the same secret, and that 

secret by itself will allow them to query the secure indexes. However, it may be desirable to be able 

to revoke a user’s ability to query a secure index. For example: 

 𝑢𝑠𝑒𝑟1 makes a secure index for a document using 𝑠𝑒𝑐𝑟𝑒𝑡 

 𝑢𝑠𝑒𝑟2 is trusted to query secure index by providing her with 𝑠𝑒𝑐𝑟𝑒𝑡 

 𝑢𝑠𝑒𝑟1 loses trust in 𝑢𝑠𝑒𝑟2 and wishes to revoke her ability to query the secure index, even 

when the raw contents of the secure index is otherwise accessible to 𝑢𝑠𝑒𝑟2. 

The motivation for partitioning secure index construction into two separate stages in Figure 1 

(𝑞𝑢𝑒𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 and 𝑝𝑟𝑜𝑥𝑦 𝑞𝑢𝑒𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟) and in Figure 2 (a 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 and 

𝑝𝑟𝑜𝑥𝑦 𝑖𝑛𝑑𝑒𝑥𝑒𝑟) is to enable user revocation. Assuming the user and proxies do not collude18, 

neither the proxies nor revoked users will be able to query secure indexes, even if they downloaded 

copies of the secure indexes to their local machines. 

                                                           
15 Default implementation uses SHA256 and non-invertibly maps the hashes to 𝑁 = 16 hexadecimal digits. 
16 A non-cryptographic hash function is preferable for efficiency reasons. 
17 Limits statistical inference to sampling from a single secure index rather than an entire corpus of secure 
indexes since each secure index has a unique and random way of mapping its unigrams and bigrams to hashes. 
18 A directed acyclic graph (e.g., a chain) of proxies may be used to mitigate the risk of collusion, but this 
introduces significant overhead. 
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In our architecture, this can be implemented through partial secrets. The following steps are 

required for secure index construction: 

 A fully trusted 𝑢𝑠𝑒𝑟𝑡 provides a partially trusted 𝑢𝑠𝑒𝑟𝑝 with set of secrets 𝑆𝑢. 

 𝑢𝑠𝑒𝑟𝑡 provides partially trusted 𝑝𝑟𝑜𝑥𝑦 𝑖𝑛𝑑𝑒𝑥𝑒𝑟 with another set of secrets 𝑆𝑣. 

 𝑢𝑠𝑒𝑟𝑝 constructs a sequence of cryptographic hashes from the ordered unigrams in the 

document concatenated with secrets in 𝑆𝑢—ℎ𝑎𝑠ℎ(𝑤|𝑠), 𝑤 ∈ 𝑑𝑜𝑐, 𝑠 ∈ 𝑆𝑢—and transmits 

the ordered sequence19 to 𝑝𝑟𝑜𝑥𝑦 𝑖𝑛𝑑𝑒𝑥𝑒𝑟. 

 𝑝𝑟𝑜𝑥𝑦 𝑖𝑛𝑑𝑒𝑥𝑒𝑟 constructs a secure index from the sequence of cryptographic hashes 

(intermediate trapdoors) using secrets in 𝑆𝑣—ℎ𝑎𝑠ℎ(ℎ|𝑠), ℎ ∈ ℎ𝑎𝑠ℎ𝑒𝑠, 𝑠 ∈ 𝑆𝑢. 

Likewise, the following steps are required for submitting queries to the secure index: 

 𝑢𝑠𝑒𝑟𝑡 provides a partially trusted 𝑢𝑠𝑒𝑟𝑝 with set of secrets 𝑆𝑢. 

 𝑢𝑠𝑒𝑟𝑡 provides partially trusted 𝑝𝑟𝑜𝑥𝑦 𝑞𝑢𝑒𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 with 𝑆𝑣. 

 𝑢𝑠𝑒𝑟𝑝 submits hidden queries using any secret in 𝑆𝑢 to 𝑝𝑟𝑜𝑥𝑦 𝑞𝑢𝑒𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 

 𝑝𝑟𝑜𝑥𝑦 𝑞𝑢𝑒𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 transforms the intermediate hidden queries using any secret in 

𝑆𝑣 and transmits the resulting hidden query to the CSP. 

To revoke Encrypted Search authorization for 𝑢𝑠𝑒𝑟𝑝, instruct the 𝑝𝑟𝑜𝑥𝑦 𝑞𝑢𝑒𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 not to 

honor her queries. Even if 𝑢𝑠𝑒𝑟𝑝 had downloaded a local copy of a secure index, she cannot 

meaningfully query it since she does not know any secrets in 𝑆𝑣. 

Additional notes. The prospect of constructing a secure index for the entire collection of documents 

sounds tempting. This master index would allow the CSP to avoid the cost of independently querying 

each secure index in the database. However, there is a significant problem with this idea: the same 

term in different documents will look the same. An alternative to the master index is a cache. 

The document processor and proxy indexer may reside on the same machine; indeed, if the client is 

trusted both of them may reside on the client’s local machine. 

Moreover, the confidential documents and the secure indexes need not reside on the same server. 

A secure index and its corresponding confidential document are independent. Also, note that 

multiple secure indexes may be constructed for the same confidential document to provide tiered 

access, e.g., the lowest tier may consist of very approximate information (e.g., large location 

uncertainty) and only unigram terms (to facilitate only keyword queries with coarse term proximity), 

whereas the highest level may include exact phrase matching and wildcard queries. 

                                                           
19 Note that the ordered sequence of trapdoors (cryptographic hashes) transmitted to 𝑝𝑟𝑜𝑥𝑦 𝑖𝑛𝑑𝑒𝑥𝑒𝑟 leaks 

significantly more information than the secure index representation since it is a simpler substitution cipher. 

Thus, 𝑝𝑟𝑜𝑥𝑦 𝑖𝑛𝑑𝑒𝑥𝑒𝑟 must be reasonably trusted. Since 𝑝𝑟𝑜𝑥𝑦 𝑖𝑛𝑑𝑒𝑥𝑒𝑟 will not be used nearly as frequently 

as 𝑝𝑟𝑜𝑥𝑦 𝑞𝑢𝑒𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟, which can be less trustworthy, 𝑝𝑟𝑜𝑥𝑦 𝑖𝑛𝑑𝑒𝑥𝑒𝑟 may be more tightly controlled 
without as much cost. 
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Secure index types. There are several different types of secure indexes analyzed and explored in our 

research. As far as we are aware, with the exception of BSIB (Bloom filter secure index-block) none 

of these secure indexes have been previously investigated. 

Perfect Hash Filter. In place of the Bloom filter [16], we propose the Perfect Hash Filter as the 

underlying data structure for our newly proposed secure indexes (note that the Perfect Hash Filter is 

not itself a secure index). Like the Bloom filter, it represents a probabilistic set.  

Suppose we wish to represent a set 𝐴. First, a perfect hash function is generated to map the 𝑛 

members of set 𝐴 to 𝑛 unique integers. Second, the perfect hash of each member 𝑥 is used to index 

into an array 𝑈 and the corresponding element in 𝑈20 is set to a 𝑀 bit hash of 𝑥. More precisely: 

(1) Each member 𝑥 ∈ 𝐴 is uniquely hashed by a perfect hash function such that 

𝑝𝑒𝑟𝑓𝑒𝑐𝑡_ℎ𝑎𝑠ℎ(𝑥) ≠  𝑝𝑒𝑟𝑓𝑒𝑐𝑡_ℎ𝑎𝑠ℎ(𝑦)  ↔   𝑥 ≠ 𝑦, 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴. That is, no collisions 

among any of the members of set 𝐴 are possible. If using a minimal perfect hash, then 

∀𝑥𝑝𝑒𝑟𝑓𝑒𝑐𝑡_ℎ𝑎𝑠ℎ(𝑥) ∈ [1, 𝑛] . 

(2) Let 𝑈 be a bit array with a minimum maximum index of argmax
𝑥

𝑝𝑒𝑟𝑓𝑒𝑐𝑡_ℎ𝑎𝑠ℎ(𝑥), where 

each element of 𝑈 is allocated 𝑀 contiguous bits. Then, ∀𝑥𝑈[𝑝𝑒𝑟𝑓𝑒𝑐𝑡_ℎ𝑎𝑠ℎ(𝑥)] =

ℎ𝑎𝑠ℎ21(𝑥) 𝑚𝑜𝑑 𝑀. 

Refer to Figure 3 for a visual depiction of the Perfect Hash Filter. Note that because each 𝑥 ∈ 𝐴 is 

represented by 𝑀 bits, false positives are possible, i.e., 𝑃[ℎ𝑎𝑠ℎ(𝑥) 𝑚𝑜𝑑 𝑀 =

ℎ𝑎𝑠ℎ(𝑦) 𝑚𝑜𝑑 𝑀 | 𝑝𝑒𝑟𝑓𝑒𝑐𝑡_ℎ𝑎𝑠ℎ(x) = 𝑝𝑒𝑟𝑓𝑒𝑐𝑡_ℎ𝑎𝑠ℎ(𝑦), 𝑥 ∈ 𝐴, 𝑦 ∉ 𝐴] =
1

2𝑀
. That is, a Perfect 

Hash Filter is a compact probabilistic set in which false positives occur with conditional probability of 

𝑃[𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 | 𝑛𝑜𝑡 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟] =
1

2𝑀
. 

 

Figure 3 Perfect Hash Filter (Using A Minimal Perfect Hash) 

                                                           
20 Array 𝑈 is a bit vector of size 𝑛𝑚 bits such that elements can be stored with arbitrary bit alignment (i.e., 
byte-alignment is not necessary). Arbitrary bit alignment is generally true for every other data structure in the 
secure indexes subsequently described, e.g., the array of bit vectors representing blocks in PSIB is actually a 
single bit vector such that the blocks allocated to a term can use arbitrary bit alignment. This avoids 
unnecessary padding overhead needed for byte alignment. 
21 A simple 𝐽𝑒𝑛𝑘𝑖𝑛𝑠𝐻𝑎𝑠ℎ was chosen, but any hash function that uniformly distributes over [0,𝑀 − 1] is 
suitable. 
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Space complexity. Like the Bloom filter, the Perfect Hash Filter can trade accuracy (false positive rate) 

for space complexity. Theoretically, the Bloom filter requires 𝑂 (1.44𝑛 log2
1

𝜀
) bits, where 𝜀 

represents the false positive rate. Since there are 𝑘 = ⌈log2
1

𝜀
 ⌉ hash functions (assuming optimality), 

where each hash function may be compactly represented with 𝑟 bits (e.g., 32 bits22), then the total 

(memory-resident, uncompressed) space required for a Bloom filter with a cardinality of 𝑛 is 

𝑂 [(1.44𝑛 + 𝑟) log2
1

𝜀
] bits. For instance, if 𝜀 = 0.001 then 9.97𝑟 + 14.35𝑛 + 𝑂(1) bits will be 

needed, where 𝑂(1) denotes the constant overhead. If we suppose the number of hash functions is 

sufficiently small, we can simply the space complexity to 14.35𝑛 + 𝑂(1) bits. 

The space complexity for the Perfect Hash Filter is 𝑂 (𝑠𝑛 + 𝑛 log2
1

𝜀
) bits, where 𝑠 depends on the 

load factor23 of the perfect hash. If it is a minimal perfect hash, the theoretical lower limit for 𝑠 is 

1.44, but in practice this has not been achieved. We use a state-of-the-art algorithm, CHD 

(Compress, Hash and Displace [38]) in which 𝑠 = 2.07 (bits/key) when using minimal perfect hash. 

Thus, the Perfect Hash Filter, using the minimal perfect hash and 𝜀 = 0.001 requires only 

12.0258𝑛 + 𝑂(1). As the false positive rate 𝜀 increases, the Perfect Hash Filter will pull even further 

ahead of the Bloom filter. 

If a perfect hash—rather than a minimal perfect hash—is preferable (e.g., see poisoning on page 

23), then even fewer bits per key are possible. For instance, if the load factor 𝑟 = 0.5, then 𝑠 =

0.67. However, since we are mapping each hash to an array index, there is a trade-off to consider. 

While fewer bits per key (member) are required for the perfect hash itself, a load factor 𝑟 = 0.5 

means instead of indexing into an array 𝑈 of size 𝑛, we must index (approximately) into an array 𝑈 

of size 𝑛∗ = 2𝑛. Thus, the space complexity is 0.67𝑛 − 2𝑛 log2 𝜀 bits. The ratio of the Perfect Hash 

Filter with a load factor 𝑟 = 0.5 to one with a load factor 𝑟 = 1 is 
0.67−2log2 𝜀

2−log2 𝜀
. The limit of this ratio 

as 𝜀 goes to 0 is 2. Thus, a load factor 𝑟 = 0.5, in the limit, takes up twice as much space as a load 

factor 𝑟 = 1. This inverse relationship is true generally, e.g., a load factor 𝑟 would require, in the 

limit, 
1

𝑟
 as much space as a load factor 𝑟 = 1. 

                                                           
22 One can simply hard code a single hash function and salt the keys, e.g., 32-bit integers. 
23 Load factor 𝑟 =

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑡

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 ℎ𝑎𝑠ℎ 𝑖𝑛𝑑𝑒𝑥
; a minimal perfect hash has a load factor of 𝑟 = 1.  
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Computational efficiency. Arguably, more importantly than space efficiency is computational 

efficiency. The Perfect Hash Filter only requires computing 𝑂(1) hash functions while the Bloom 

filter requires computing 𝑘 = ⌈log2
1

𝜀
 ⌉ hash functions. We will see later, in the chapter on 

experimental results, that this gives the Perfect Hash Filter a significant computational advantage 

over the Bloom filter. 

Perfect Hash Filter’s flexibility. The Perfect Hash Filter is a probabilistic set, but since it provides a 

unique index for each member, this unique index may be efficiently used to tag a member with 

other kinds of information. For example, it is trivial to extend the Perfect Hash Filter to implement a 

multiset. We use this flexibility to derive several different secure index types. 

Disadvantages. The Perfect Hash Filter has some disadvantages compared to the Bloom filter. First, it 

may leak more information. In a Perfect Hash Filter, there are no collisions between members, but 

in a Bloom filter not only may collisions occur, but they may also only partially occur. Thus, the same 

pattern of 1’s and 0’s in the Bloom filter’s bit vector can occur in more ways than the Perfect Hash 

Filter’s patterns of 1’s and 0’s. However, through techniques like index poisoning, this may be 

immaterial. Also, like with the Bloom filter, each member in a Perfect Hash Filter collides with an 

infinite set of non-members with a false positive rate 𝜀. Second, the Perfect Hash Filter is an 

immutable data structure—no dynamic updates are possible, e.g., no adding or removing members. 

However, in the context of Encrypted Search, this limitation seems minor. 

Perfect Hash Filter secure index (PSI). A secure index based on the Perfect Hash Filter capable of 

answering approximate Boolean queries. Once the trapdoors (cryptographic hashes of searchable 

terms, see page 5) have been constructed, they may be inserted into the Perfect Hash Filter. 

 

Figure 4 The Perfect Hash Filter Secure Index (PSI) 
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Space complexity. The space complexity of PSI is just the space complexity of the Perfect Hash Filter, 

where 𝑛—the cardinality of the set—is equal to the number of unique searchable atomic terms (set 

members) in the document. Thus, it has a space complexity of 𝑂 (𝑠 ∙ 𝑛 + 𝑛 log2
1

𝜀
) bits, where 𝑠 

depends on the load factor 𝑟 (if using a minimal perfect hash, 𝑠 = 2.07). Note that the searchable 

atomic terms in our secure indexes are the unique unigrams and bigrams in documents, which 

allows us to take advantage of the biword model for exact phrase searching. Thus, if a document has 

ℎ words, then there are 𝑛 ≈ 2ℎ searchable atomic terms. 

False positives. The Perfect Hash Filter (PHF) is a probabilistic set in which false positives may occur. In 

addition, for the PSI there is a different way in which a false positive may occur when processing 𝑛-

gram query terms, 𝑛 >  2. If a document contains the words “A B B D”, then the PSI will 

conceptually represent it as the set {“A”, “B”, “D”, “A B”, “B B”, “B D”}. To determine if “A B” exists 

in the document, a single set membership test will suffice. 

However, determining whether the query term “A B B” exists in the document is more complicated 

(it does not exist in the set if only unigrams and bigrams are members). To support exact phrase 

searches larger than bigrams, as in the trigram “A B B”, a biword model is used in which 𝑛-gram 

query terms, 𝑛 >  2, are decomposed into a set of 𝑛 − 1 bigram tests, e.g., testing if “A B B” exists 

is transformed into a  a conjunction of membership tests for “A B” and “B B”. If all bigrams test as 

positive, the 𝑛-gram term is said to exist in the document. In this case, “A B B” will correctly test 

positively. But if the term is “A B D”, then it will test positively both for “A B” and “B D” but nowhere 

in the document is the trigram “A B D” found. Therefore, this query term would cause a false 

positive to occur. 

Poisoning. The perfect hash need not be a minimal perfect hash. If a perfect hash with a load factor 𝑟 

is used for a set with a cardinality of size 𝑛, then an array of size 
𝑛

𝑟
 will be constructed so that only a 

proportion 𝑟 of the entries will be addressed by perfect hashes of the 𝑛 positive members. Instead 

of leaving the contents of the unaddressed entries zeroed out, the PSI randomizes them to make 

them appear indistinguishable from member entries. 

In general, it is impossible to tell which entries in the array are for members (unigrams and bigrams 

in the document) as opposed to non-members (fake terms). This is called secure index poisoning. Let 

𝑝 = 1 − 𝑟 denote the proportion of fake elements in the array. Increasing 𝑝 has no effect on the 

false positive rate and its space complexity is 𝑓(𝑝) = 𝑠(𝑝) ∙ 𝑛 +
𝑛

𝑝−1
log2 𝜀, where 𝑠 is a decreasing 

function of 𝑝. For example, if we let 𝜀 = 2−10, then 𝑓(0) ≈ 12𝑛 and 𝑓(0.5) ≈ 20𝑛. The latter is 

only 1.7 times as large as the former despite having an array twice as large. 

Additional notes. In our PSI secure index, we allow for any false positive rate 2−M, where 𝑀 is any 

positive integer. In practical implementations, it may be sensible to optimize the special case where 

𝑀 represents a byte-aligned number of bits, e.g. 16-bits, to take advantage of faster parallel bitwise 

operations. 

PSI is not used in isolation in any of the experiments. Instead, we explore secure indexes derived 

from PSI—namely, PSIB, PSIF, and PSIP. Likewise, BSIB derives from BSI (Bloom filter secure index), 

but we do not explore BSI in isolation either. In retrospect, this may have been an oversight. We 

would also be curious to compare a PSI-derived index that is more directly comparable to BSIB, i.e., 

a secure index which constructs a perfect hash for each block-of-word segments as is done in BSIB. 
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PsiBlock (PSIB). PSIB uses a PSI for answering approximate Boolean queries, and on top of that 

provides an interface capable of answering approximate frequency and location requests for query 

terms. 

 

Figure 5 The PSI Block-Based Secure Index (PSIB) 

To construct a PSIB, first a PSI is constructed. Then, the document is segmented into 𝑏 blocks, and a 

bit vector of size 𝑏 is constructed for each unigram and bigram in the document such that if a 

unigram or bigram resides in a block, the corresponding index representing that block in the bit 

vector for the given term is set to 1. Otherwise, it is set to 0. The larger 𝑏 is, the more precisely PSIB 

can locate terms. 

Space complexity. The space complexity is 𝑂(𝑠𝑛 + 𝑛 log2
1

𝜀
+ 𝑛𝑏) bits, where 𝑠 = 2.07 if a minimal 

perfect hash is used and 𝑛 is the number of unique unigrams and bigrams in the document. 

The bit vector representing the blocks a term resides in can become very sparse as the number of 

blocks 𝑏 increases. However, note that sparse bit vectors are highly compressible—see compressed 

bit vectors. This represents a trade-off between space complexity and time complexity. We elected 

not to explore this trade-off in our experiments, but it would be interesting to see the effect of using 

various compression schemes on the sparse bit vector. 

Frequency information. The frequency for a query term is approximated by summing the binary digits 

of the bit vector representing that term’s approximate block locations. Note that for unigram and 

bigram query terms, the pre-computed bit vector may be used, but if the term is an k-gram, 𝑘 >  2, 

then the bit vector representing locations for the term is derived from an AND operation on the 

corresponding bit vector entries for all of the bigrams of the 𝑘-gram query term. 

Location information. The location for a query term is approximated in much the same way as the 

frequency, except instead of summing the binary digits of the bit vector, a list of approximate 

locations is returned. For example, if each block is of size 𝑚 (each block has 𝑚 words, except the last 

which may have fewer) and query term t exists in 𝑏𝑙𝑜𝑐𝑘𝑠 0 and 𝑏𝑙𝑜𝑐𝑘𝑠 5, then two locations will be 

returned, one in the range [0,𝑚 − 1] and the other in the range [5𝑚, 6𝑚 − 1]. 

On false negatives. Unlike the PSI, false negatives are possible because we use the approximate 

location information in PSIB to eliminate positive matches that are most likely false positives. 

However, if an occurrence of a true positive spans two or more blocks, that occurrence will be 

eliminated by this imperfect heuristic. A method to eliminate the possibility of false negatives is to 
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check for whether the bigrams of a 𝑘-gram query term exist in adjacent blocks, e.g., for the query 

term “A B C”, if “A B” exists in 𝑏𝑙𝑜𝑐𝑘 𝑖, check for “B C” in either 𝑏𝑙𝑜𝑐𝑘 𝑖 or 𝑏𝑙𝑜𝑐𝑘 𝑖 + 1. For 

sufficiently long query terms, a chain of adjacent blocks may also be acceptable. 

Additional notes. We allow for an arbitrary number of blocks per document. However, like with the 

PSI, a more practical implementation could see a significant performance boost if byte-aligned sizes 

were used instead, e.g., 𝑘 − 1 parallel bitwise 𝐴𝑁𝐷 operations could determine which blocks 

contain all the bigrams in a 𝑘-gram query term. 

PsiFreq (PSIF). PSIF uses a PSI for answering approximate Boolean queries, and on top of that 

provides an interface capable of answering approximate frequency requests for query terms. 

 

Figure 6 The PSI Frequency Secure Index (PSIF) 

To construct a PSIF, first a PSI is constructed. Then, the frequency of each member (unigram and 

bigram) is calculated. These frequency counts are then stored in a bit vector in a memory efficient 

way. 
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Space complexity. The space complexity is 𝑂 (𝑠𝑛 + 𝑛 log2
𝐹

𝜀
) bits, where 𝑠 is 2.07 if a minimal perfect 

hash is used, 𝑛 is the number of unique unigrams and bigrams in the document, and 𝐹 is the 

maximum frequency24 of any unigram or bigram. 

Frequency information. To service frequency request for terms, if the term is a unigram or bigram, the 

PSI interface is used to index into the PSIF’s bit vector that stores frequency information and the 

indexed value is considered to be the corresponding term’s frequency. If the query term is not a 

unigram or bigram, then the frequency is considered to be the minimum frequency of all of the 

bigrams making up the query term. 

Poisoning. PSIF stores explicit frequency information, unlike PSIB and BSIB, where frequency is 

approximated implicitly by location uncertainty (block size). If exact frequencies leak too much 

information about the document, then during the construction phase an approximation of the exact 

frequency may be stored instead, e.g., 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  𝑒𝑥𝑎𝑐𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 +

 𝑈𝑁𝐼𝐹(−𝑟, 𝑟). 

PsiPost (PSIP). PSIP uses a PSI for answering approximate Boolean queries, and on top of that 

provides an interface capable of answering approximate frequency and location requests. 

 

Figure 7 The PSI Postings List Secure Index (PSIP) 

To construct a PSIP, first a PSI is constructed. Then, a postings list (a list of positions) for each 

unigram and bigram in the document is constructed. 

Space complexity. The space complexity is 𝑂 (𝑠𝑛 + 𝑛 log2
1

𝜀
+

𝑤∑ frequency(𝑥)𝑥∈{unigrams(𝑑𝑜𝑐)}∪{bigrams(𝑑𝑜𝑐)} ) bits, where 𝑠 is 2.07 if a minimal perfect hash is 

used, 𝑛 is the number of unique unigrams and bigrams in the document, and 𝑤 (e.g., 32 bits) is the 

number of bits needed to store a reference to a term’s location in the document. 

A likely more efficient representation of a posting lists is a list consisting integers representing the 

size of the gaps between adjacent positions of a term. Since the list does not need to facilitate 

random access, i.e., operations on it can efficiently be performed sequentially, the gaps may also be 

compressed, e.g., Huffman coded. 

                                                           
24 Note that a simple optimization would allow 𝐹 to be maximum frequency minus the minimum frequency. 
The minimum frequency is at least and most likey is 1, so in practice this may result in very little savings. 
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The space complexity for a given document with these changes is: 

𝑠𝑛 + 𝑛 log2
1

𝜀
+ { ∑ ( ∑ huffman_code(𝑔𝑎𝑝)

𝑔𝑎𝑝∈𝑝𝑜𝑠𝑡𝑖𝑛𝑔𝑠(𝑥)

)

𝑥∈{unigrams(𝑑𝑜𝑐)}∪{bigrams(𝑑𝑜𝑐)}

} + 𝑂(1) 

Moreover, inspired by PSIB and its block-based approach, instead of storing the exact number of 

gaps 𝑡 between adjacent positions of a term, store ⌈𝑡/𝑘⌉, where k is an integer denoting the block 

granularity size. Furthermore, positions that map to the same block may be ignored to further 

reduce space requirements (but at the cost of a loss of frequency information, which may be 

desirable anyway). 

Frequency information. Frequency information is stored implicitly by posting lists. To service frequency 

request for terms, if the term is a unigram or bigram, the PSI interface is used to index into the 

PSIP’s list of postings, and the size of the indexed posting is considered to be the corresponding 

term’s frequency. If the query term is not a unigram or bigram, then the frequency is considered to 

be the minimum frequency of all of the bigrams making up the query term. 

Note that PSIP does not exploit location information to eliminate some false positives as is done in 

location requests. This was done for the sake of speed, but in theory if the way documents are 

scored (according to queries) relies upon both location and frequency information, this could be 

done without any additional cost. 

Location information. To service location requests for unigrams or bigrams, the PSI interface is used to 

index into the list of postings and the posting stored at that index is returned. 

For an 𝑘-gram query term, a greedy algorithm is used to construct non-overlapping sets each with a 

diameter less than or equal to some constant that depends on the way in which the postings list was 

poisoned, as discussed in the next section on poisoning. The positions of a term are taken to be the 

center of each such non-overlapping set. 

Note that since a greedy algorithm is used, this operation is fast as evidenced by experiments 

consisting of queries with a large phrase terms. Moreover, the use of a more sophisticated 

algorithm, e.g., an algorithm that produces the maximum number of non-overlapping sets, is not 

obviously an improvement in the context of greater accuracy. 

Poisoning. Location information is explicitly stored for each unigram and bigram in the document. If 

storing exact locations leaks too much information about the document, then during the 

construction phase approximate locations may be stored instead. In particular, we achieve this by 

randomly changing each word’s position by some offset, e.g., 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =

 𝑒𝑥𝑎𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 +  𝑈𝑁𝐼𝐹(−𝑟, 𝑟). Note that in the experiments, we use a triangular distribution 

(with a mode equal to the exact position) instead of a uniform distribution. The triangular 

distribution has less variance and therefore preserves more information about location information. 

If exact frequencies leak too much information about the document, then during the construction 

phase, insert random positions into the postings lists or calculate the average position of adjacent 

positions for a term and use that average position in place of the adjacent positions. Repeat this as 

many times as necessary to achieve the desired level of approximation, e.g., if a term appears 𝑁 

times, repeating the mean adjacency operation 𝑁 − 1 times would result in storing only its mean 

position. 
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PsiMin (PSIM). PsiMin stands for PSI minimum pairwise distance. 

 

Figure 8 The PSI Minimum-Pairwise Distance Secure Index (PSIM) 

To mitigate the threat from the adversary described on page 37, we should not store any location 

information. However, if proximity-sensitive searching is desired, some kind of proximity 

information must be stored. What if we only store relative position information (e.g., distances with 

respect to other terms) such that it is impossible to determine a word's approximate, absolute 

location? This is the central idea behind PSIM. Instead of storing location information, for each 

word, store the minimum distance to every other word in the document (as long as the minimum 

distance is less than some specified threshold distance). To reiterate, it only stores the minimum 

pairwise distances; all other distance and location information is lost25. Order information is also 

lost, i.e., in isolation it is not possible to determine (with certainty) which word comes first in a pair 

of words. This is a very problematic representation for the adversary since much of the information 

to draw inferences from is lost, e.g., the adversary’s jig-saw-like attack would be ineffective. 

Space complexity. Consider a document 𝐷 consisting of a sequence of the following 10 (5 unique) 

words: 

𝐷 = "𝑤𝑜𝑟𝑑0 𝑤𝑜𝑟𝑑1 𝑤𝑜𝑟𝑑2 𝑤𝑜𝑟𝑑0 𝑤𝑜𝑟𝑑3 𝑤𝑜𝑟𝑑4 𝑤𝑜𝑟𝑑1"  

If we let the maximum threshold distance be 3, then PSIM represents document D as: 

𝐷∗= psim(𝐷) = {{𝑤𝑜𝑟𝑑0, 𝑤𝑜𝑟𝑑0: 3}, {𝑤𝑜𝑟𝑑0, 𝑤𝑜𝑟𝑑1: 1}, {𝑤𝑜𝑟𝑑0, 𝑤𝑜𝑟𝑑2: 1},

{𝑤𝑜𝑟𝑑0, 𝑤𝑜𝑟𝑑3: 1}, {𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2: 1}, {𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑3: 2}, {𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑4: 1},
{𝑤𝑜𝑟𝑑2, 𝑤𝑜𝑟𝑑3: 1}, {𝑤𝑜𝑟𝑑2, 𝑤𝑜𝑟𝑑4: 2}, {𝑤𝑜𝑟𝑑3, 𝑤𝑜𝑟𝑑4: 1}} 

There are 10 minimum pairwise distances which are less than or equal to 3. In general, the number 

of minimum pairwise distances stored in 𝐷∗ is upper-bounded by min{(𝑛+1
2
), 𝑣𝑁}, where 𝑁 and 𝑛 

are the number of words and the number of unique26 words in 𝐷 respectively. Thus, the space 

complexity of 𝐷∗ is theoretically upper-bounded by min{(𝑛+1
2
), 𝑣𝑁} ⌈𝑠 + log2

𝑣

𝜀
⌉ + 𝑂(1) bits, 

where 𝑣 is the distance threshold, 𝜀 is the false positive rate, and 𝑠 = 2.07 if using a minimum 

perfect hash for the Perfect Hash Filter. 

                                                           
25 Even the word count is lost. 
26 The number of unique words  ≤ 𝑁, where 𝑁 is the total number of words in the document. 
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In general, given the ith and jth keywords in 𝐷, 𝑡𝑖 and 𝑡𝑗 respectively, if mindist(𝐷, t𝑖, t𝑗) ≤ 𝑣, we 

store their minimum distance in 𝐷∗: 

mindist(D∗, 𝑡, 𝑢) = {
mindist(𝐷, 𝑡, 𝑢), if mindist(𝐷, 𝑡, 𝑢) ≤ 𝑣

𝐾, if mindist(𝐷, 𝑡, 𝑢) > 𝑣
, 

where 𝐾 is some constant. 

Location information. Note that we only store the minimum pairwise distances between keywords 

(unigrams) for document 𝐷 in 𝐷∗ = psim(𝐷). Thus, if the terms whose minimum pairwise distance 

is being requested are unigrams, PSIM can return an exact answer. However, if the terms are 𝑛-

grams, 𝑛 > 1, their minimum pairwise distance may only be estimated. 

Given 𝑘0-gram term t0 = [𝑤0,0 𝑤0,1…𝑤0,𝑘0] and 𝑘1-gram term t1 = [𝑤1,0 𝑤1,1…𝑤1,𝑘1], where 𝑤𝑖,𝑗 

is the jth word in 𝑡𝑖, then the minimum pairwise distance between the ith word in 𝑡0 and the jth word 

in 𝑡1 is estimated to be 𝑑𝑖,𝑗
∗ = mindist(𝐷∗, 𝑤0,𝑖, 𝑤1,𝑗). Then, a lower bound for mindist(𝐷, t0, t1) is: 

mindist(𝐷∗, t0, t1) = max
𝑖,𝑗

𝑑𝑖,𝑗 , 𝑖 ∈ [0, 𝑘0], 𝑗 ∈ [0, 𝑘1] 

This lower bound may also serve as a reasonable estimate of mindist(𝐷, t0, t1), recalling that 

maximum threshold distance 𝑣 is expected to be small. 

Poisoning. PSIM stores explicit minimum pairwise distance information, unlike PSIB, PSIP, and BSIB, 

where minimum pairwise distances are derived from (approximate) location information. If exact 

minimum pairwise distance information leaks too much information about the document, then 

during the construction phase an approximation of the exact minimum pairwise distance may be 

stored instead, e.g., 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

 𝑒𝑥𝑎𝑐𝑡 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +  𝑈𝑁𝐼𝐹(−𝑟, 𝑟). 

Furthermore, like every other secure index derived from PSI, fake terms—or in this case, fake 

minimum pairwise distances—may also be constructed at a small cost to compression ratio and no 

cost to accuracy. 

Use cases. For large 𝑣, PSIM may not be very practical since it causes the size to be nearer to the 

upper bound and likewise for large documents27, i.e., its size is exactly lim
𝑣→𝑁

bits(𝐷∗) =

𝑛(𝑛+1)

2
⌈𝑠 + log2

𝑁

𝜀
⌉ + 𝑂(1). 

However, it may be usable in a more modest way, since experiments have revealed that in practice, 

for small 4 ≤ 𝑣 ≤ 5, the compression ratio for PSIM can be expected to be less than 1. Analytically, 

it should be around 𝑣𝑁 ⌈𝑠 + log2
𝑣

𝜀
⌉. This may still be unacceptably large, but if confidentiality and 

accurate proximity-sensitive searching are priorities, PSIM may be a tempting. 

First, the PSIM may be used to give a secure index 𝑆, like PSIB, more precise proximity sensitivity for 

nearby words without compromising document confidentiality, e.g., 𝑣 ∈ [4,6]. If the minimum 

distance between two terms in a query is larger than the threshold distance 𝑣, then the 

approximate location information in the secure index 𝑆 may be used instead (knowing that it cannot 

                                                           
27 We anticipate that the worst-case space complexity will improbable even for large documents if 𝑣 is 
reasonably small on natural language text since sentences are not random sequences of words. 
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be less than lower-bound 𝑣). Such an 𝑆 that uses PSIM in this way (for small threshold distance 𝑣) 

has a space complexity upper-bounded by 𝑣𝑁 ⌈𝑠 + log2
𝑣

𝜀
⌉ + space complexity(𝑆). 

Second, PSIM may be used to prevent some false positives from occurring due to the biword model. 

For instance, given a PSIM 𝐷∗ with a maximum distance threshold 𝑣, if the user searches for an 𝑟-

gram phrase, then for the secure index to contain that phrase, it must be the case that 

mindist(𝐷∗, 𝑤𝑜𝑟𝑑𝑖 , 𝑤𝑜𝑟𝑑𝑗) ≤ |𝑖 − 𝑗|, 0 ≤ 𝑖, 𝑗 < 𝑟, 𝑖 ≠ 𝑗, |𝑖 − 𝑗| ≤ 𝑣. For even small 𝑣, this would 

make false positives extremely unlikely, especially on 𝑟-grams where 𝑟 ≤ 𝑣. 

Bloom filter secure index-block (BSIB) [19]. A secure index capable of answering approximate 

frequency and location requests for query terms. BSIB uses a Bloom filter as the underlying data 

structure (it is a popular representation of probabilistic sets). There is existing research on this 

particular secure index representation, so we implemented a design consistent with prior work [19]. 

Similar to PSIB, BISB is a block-based secure index and operates in a similar way—by segmenting a 

document into 𝑁 blocks. However, unlike in PSIB, it constructs a Bloom filter for each block (the 

Perfect Hash Filter can be used more flexibly since it uniquely maps each member to an integer—

see page 22).  

Moreover, the Bloom filter requires computing 𝑘 = ⌈log2
1

𝜀
 ⌉ hash functions. Since there are 𝑁 such 

Bloom filters, in the worst-case scenario a BSIB must compute ⌈log2
1

𝜀
 ⌉ 𝑁 hash functions. In 

comparison, the PSI-based secure indexes only need to compute 𝑂(1) hash functions. 

RELEVANCY METRICS 
Encrypted Search efforts have largely ignored the problem of matching queries to relevant 

(according to standard information retrieval techniques) sets of documents, e.g., rank-order 

documents by a measure of how close they match a hidden query without compromising the data 

confidentiality and query privacy. 

In information retrieval, finding effective ways to measure relevancy is of fundamental importance. 

To that end, past researchers have devised many clever algorithms and heuristics to rank-order 

documents by their estimated relevancy to a given query. We will explore term weighting and term 

proximity weighting heuristics in the context of our secure index constructions. 

Precision and recall. Precision and recall are relevant metrics for Boolean searches; they do not rank 

retrieved documents like BM25 or MinDist*; a document is either considered relevant (contains all 

of the terms in a query) or non-relevant. 

Precision measures the proportion of retrieved documents that are relevant to the query. It is 

defined as: 

precision =
|relevant ∩  retrieved|

|retrieved|
 

Precision has a range of [0, 1]. Recall measures the proportion of relevant documents that were 

retrieved. It is defined as: 
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recall =
|relevant ∩  retrieved|

|relevant|
 

Recall also has a range in [0, 1]. It is trivial to achieve a recall of 1 (100%) by retrieving every 

document in the corpus. However, this comes at the cost of decreased precision. Thus, in general 

there is a trade-off between precision and recall. 

Term importance: BM25 [34]. BM25, a well-established tf-idf variant, is one of the relevancy 

measures chosen for our experiments. Mathematically: 

BM25(𝑑, 𝑡, 𝐷) = idf(𝑡, 𝐷) ×
tf(𝑡, 𝑑) × (𝑘1 + 1)

tf(𝑡, 𝑑) + 𝑘1 × (1 − 𝑏 + 𝑏 × 
|𝑑|

𝑎𝑣𝑔𝑑𝑙
)
, 

where 𝑎𝑣𝑔𝑑𝑙 is the average size (in words) of documents in 𝐷. 

Parameters 𝑏 and 𝑘1 are free parameters. In the experiments, they are set to typical values [34]; 𝑏 is 

set to 0.75 and 𝑘1 is set to 1.2. Ideally these parameters would be automatically tuned for each 

secure index. The function 𝑡𝑓 stands for term frequency and simply returns the number of 

occurrences of term 𝑡 in document 𝑑. The function 𝑖𝑑𝑓 stands for inverse document frequency. 

idf(𝑡, 𝐷) = log(
|𝐷| − count(𝑡, 𝐷) +

1
2

count(𝑡, 𝐷) +
1
2

), 

where |𝐷| is the number of documents in 𝐷 and 𝑐𝑜𝑢𝑛𝑡 is a function which returns the number of 

documents in 𝐷 which had one or more occurrences of term 𝑡. 

When using BM25 to rank search results, each document 𝑑 in 𝐷 is ranked according to query 𝑄 by 

the function BM25Score(𝑑, 𝑄) = ∑ BM25(𝑡∈𝑄 𝑑, 𝑡, 𝐷), where 𝑡 is a term in query 𝑄. After giving 

every document a BM25 rank, the results are sorted in descending order of rank as the final output. 

Note that BM25Score is not used in most real-world information retrieval systems; instead, they 

typically employ a vector space model, in which a vector �⃗�(𝑑) for each document 𝑑 in 𝐷 is 

constructed, where each dimension represents a word 𝑡 with a weight equal to BM25(𝑑, 𝑡, 𝐷). 

Subsequently, a document can be ranked according to a query by taking the cosine similarity [39] of 

their respective vectors. However, as explained on page 12, this representation is problematic in 

light of the limited information (for confidentiality) available in secure indexes. 

Term proximity: MinDist* [40]. MinDist, like BM25, ranks documents according to their proximity 

relevance to a given query. It is a less established ranking heuristic than BM25, but in experiments 

[40] it had performed well compared to other proximity heuristics. In our experiments, we add 

additional tunable parameters to MinDist and call it MinDist*. 

MinDist* is a proximity heuristic in which the minimum distance between each existent pair of 

terms are summed over. Thus, it needs location information. So, for example, if query 𝑄 = {𝐴, 𝐵, 𝐶}, 

where 𝐴, 𝐵, and 𝐶 are the terms of 𝑄, and document 𝐷 = “A B D D A D C”, then the minimum 

pairwise distances are:  (𝐴, 𝐵)  =  1, (𝐴, 𝐶)  =  2, and (𝐵, 𝐶)  =  5. The summation of these 

distances is simply 𝑠 = 1 + 2 + 5 = 8. MinDist* is a scoring function dependent upon the minimum 

pairwise distance summation s. 
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The intuition behind MinDist* is the more concentrated the query terms are in a document, the 

more relevant the document is to the query, but only up to a certain point. For example, consider a 

query 𝑄 = {“𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟”, “𝑠𝑐𝑖𝑒𝑛𝑐𝑒”}. Given two documents A and B, where A contains both 

“computer” and “science” on page 7 and B contains “computer” on page 7 and “science” on the 

page 20, it is obvious that A should be considered much more relevant to 𝑄 since the two keywords 

of interest are much closer together. However, consider a third document C containing “computer” 

on page 7 and “science” on page 100. Intuitively, this is not much worse than B; both documents are 

simply not that relevant; B is only marginally more relevant at best. 

Mathematically, these intuitions are implemented in the following way. Let 𝑄 be the set of query 

terms, 𝑄’ be the subset of 𝑄 that exist in the given document, and 𝑠 be the sum of the minimum 

pairwise distances between terms in 𝑄’. 

MinDistScore(𝑄) = ln (𝛼 + 𝛾 ∙ exp {−
𝛽𝑠

|𝑄′|𝜃
}), 

where 𝛼, 𝛾, 𝛽, 𝜃 > 028. To see if this function matches our expected intuition—a strictly decreasing 

function that flattens out as 𝑠 increases—it may be instructive to consider the limits and partial 

derivative of 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒 with respect to 𝑠. 

As s converges to 0, 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒 converges to ln(𝛼 + 𝛾). As 𝑠 converges to ∞, 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒 

converges to ln(𝛼). To see if these end points are the maximum and minimum values respectively, 

let us consider the partial derivative with respect to 𝑠. 

𝜕

𝜕𝑠
MinDistScore(𝑄) = −

1

|𝑄′|𝜃
(

𝛽𝛾 ∙ exp {−
𝛽𝑠
|𝑄′|𝜃

}

𝛼 + 𝛾 ∙ exp {−
𝛽𝑠
|𝑄′|𝜃

}
) 

This function, for all positive values of 𝑠, is negative. It approaches −
1

|𝑄′|𝜃
(
𝛽𝛾

𝛼+𝛾
) as 𝑠 approaches 0 

and it asymptotically approaches 0 as 𝑠 approaches ∞. This matches the desired intuition; for small 

𝑠, a small increase in 𝑠 corresponds to a large decrease in 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒; and, for large 𝑠, a small 

increase in 𝑠 corresponds to small decrease in 𝑠. 

It is also reassuring to note that for large |𝑄’|, the function will decrease less rapidly than for small 

|𝑄’|, which is the desired behavior. Recall that |𝑄’| corresponds to a document matching more of 

the terms in query 𝑄. We do not wish to penalize (at least not too harshly) a document that contains 

more of the query’s terms but spread out over a larger region. 

MinDist* may be used as a way to add proximity sensitivity to already established scoring methods, 

like BM25. For example, a linear combination of their scores can be used as the final output of a 

scoring function that is both sensitive to proximity and term frequencies29: 

Score(𝑑, 𝑄, 𝐷) = 𝛼1 ∙ MinDistScore(𝑄) + 𝛼2 ∙ BM25Score(𝑑, 𝑄, 𝐷) 

                                                           
28 The original MinDist scoring function is equivalent to 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒(𝑄;  𝛾 =  1, 𝛽 =  1, 𝜃 =  0). 
29 If 𝛼1 + 𝛼2  =  1, 𝛼1 > 0, 𝛼2 > 0 then 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒 and 𝐵𝑀25𝑆𝑐𝑜𝑟𝑒 may be normalized such 

that they share the same minimum and maximum values and the 𝑆𝑐𝑜𝑟𝑒 has a range [0, 1]. 



33 
 

Mean average precision (MAP). MAP is a popular way to measure the performance of information 

retrieval systems with respect to degrees of relevancy. We use MAP to measure a secure index’s 

BM25 (or MinDist*) output. In particular, we do this by measuring how closely its BM25 (or 

MinDist*) output matches the BM25 (or MinDist*) output for a non-secure, canonical index that 

retains perfect location and frequency information. 

The more approximately a secure index represents a document, the less information one can infer 

about the document from the secure index. Thus, to what extent the secure index can approximate 

a document while still achieving high MAP scores is an important question. 

MAP is calculated by taking the mean of the average precisions on over 30 queries. The precision at 

𝑘 is: 

precision(𝑞, 𝑘) =
|𝑘 most relevant docs to query 𝑞 ∩ top 𝑘 retrieved docs for query 𝑞|

𝑘
 

The average precision for the top 𝑛 documents is: 

avg_precision(𝑞, 𝑛) =
1

𝑛
∑precision(𝑞, 𝑘)

𝑛

𝑘=1

 

The mean average precision (MAP) for the top 𝑛 documents over a query set 𝑄 𝑖𝑠: 

map(𝑄, 𝑛) =
1

|𝑄|
∑avg_precision(𝑞𝑖, 𝑛)

|𝑄|

𝑖=1

 

Thus, to estimate a secure index type’s MAP score, we need a set of documents 𝐷 and a query set 

𝑄. Then, we construct a set of secure indexes 𝑆𝐼 for 𝐷, and rank-order both 𝑆𝐼 and 𝐷 according to 

each 𝑞 ∈ 𝑄. Finally, we calculate the mean average precision (MAP) over these rank-ordered ouputs 

using the rank-ordered outputs for 𝐷 as the 𝑡𝑟𝑢𝑒, canonical output. 

Consider the following. Suppose the ranked list of relevant documents to a query is [3, 0, 1, 2, 4], 

and the retrieved ranked list (by a secure index) is [2, 4, 3, 0, 1]. The precision at 𝑘 = 1 is 
|{3}∩{2}|

1
=

|∅|

1
= 0; the precision at k=2 is 

|{3,0}∩{2,4}|

2
=

|∅|

2
= 0; the precision at 𝑘 = 3 is 

|{3,0,1}∩{2,4,3}|

3
=

|{3}|

3
=

1

3
, the precision at 𝑘 = 4 is 

|{3,0,1,2}∩{2,4,3,0}|

4
=

|{3,0,1}|

4
=

3

4
, and the precision at 𝑘 = 5 

is
|{3,0,1,2,4}∩{2,4,3,0,1}|

5
=

|{3,0,1,2,4}|

5
=

5

5
= 1. Thus, the average precision is 

0+0+
1

3
+
3

4
+1

5
=

5

12
. The mean 

average precision would simply be the mean of the average precisions for 𝑀 queries. 

Note that the average precision for the last value of 𝑘 is necessarily 1 if, by that iteration of 𝑘, the 

relevant set and the retrieved set contain the same elements. However, in general, this is not the 

case; for instance, if the relevant ranked list of documents to a query is (A, B), and the retrieved 

ranked list is (D, C, B, A), then if the mean average precision goes from 𝑘 = 1 to 𝑘 = 2, the average 

precision is 0. In our simulations, we do a variation of this. 

Suppose the relevant ranked list of documents to a query is (A=0.9, B=0.85, C=0, D=0), and the 

retrieved ranked list is (A=0.9, C=0.85, D=0.5, B=0). Then, I calculate the average precision for the 

top 𝑘 = 3 instead of the top 𝑘 = 4 or top 𝑘 = 2. In this example, document B is not included in any 

of the precision at 𝑘 = 1 to 𝑘 = 3 calculations. 
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Finally, in one of the experiments, we conduct a “page one” MAP test, i.e., we find the mean 

average precision using only the top 10 results. The randomized algorithm does much more poorly 

in this instance, e.g., with over 85% probability, the mean average precision will be less than 0.05. 

INFORMATION LEAKS 
To mitigate document confidentiality and query privacy information leaks, several different 

techniques will be explored. 

Query privacy leaks. Hidden queries, as substitution ciphers, represent one of the more vulnerable 

parts of the system. We consider below two general strategies an adversary may employ to 

compromise query privacy: cryptographic hash attacks and maximum likelihood attacks. Note that 

we only provide a theoretical treatment on cryptographic hash attacks, but provide both a 

theoretical and empirical (simulation) treatment on adversaries employing the proposed maximum 

likelihood attack. 

Cryptographic hash attacks. Cryptographic hash functions take as input an arbitrary-length string and 

output a fixed-length string (hash value). In general, cryptographic hash functions have the following 

properties. 

Pre-image resistance. Given a hash ℎ, finding an 𝑚 such that ℎ𝑎𝑠ℎ(𝑚) = ℎ should be intractable. 

Lacking this property, an adversary may observe ℎ and find one or more candidate 𝑚. On the one 

hand, in the context of hidden queries, lacking pre-image resistance, an adversary may be able to 

discern which keywords or phrases a target has an interest in finding. On the other hand, it may be 

productive to increase the collision rate so that it is trivial to find an 𝑚 such that ℎ𝑎𝑠ℎ(𝑚)  =  ℎ. 

This is especially relevant when the adversary knows one or more secrets—in that case, simple 

dictionary attacks become possible. The collision rate can be controlled such that a dictionary attack 

will produce some set 𝑀 such that ℎ𝑎𝑠ℎ(𝑚) =  ℎ,𝑚 ∈ 𝑀. In this case, the adversary may not have 

enough information to determine which 𝑚 ∈ 𝑀 the user was actually interested in. 

Thus, there is a case to be made that pre-image resistance is undesirable in this context. Indeed, 

since most queries will consist of common terms, if the adversary knows any secrets he can hash a 

dictionary of common terms to discover what other users are searching for.30 However, if too many 

collisions on legitimate queries occur, then this may have a negative effect on the accuracy of search 

results. Collision resistance therefore represents a trade-off between privacy and accuracy of search 

results. 

We do not explore this trade-off experimentally, but a simple approach to exploring consists of 

changing the size of the fixed-length output of the cryptographic hashes (trapdoors); if a hash 

function maps all input to 𝑛 bits, then a smaller 𝑛 corresponds to a larger collision rate. For example, 

if there are 64 query terms which are mapped to 4 bits each, then on average (assuming a good 

uniform hash function) each term will collide with 
64

24
= 4 other terms in the population. How this 

will in practice effect outputs of interest is difficult to estimate without performing experiments. 

                                                           
30 Note that this assumes the adversary has access to the hidden query stream. If the hidden query steam is 
taking place over a secret channel, the secure index server and the adversary must share information to make 
this an effective kind of attack. 
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Collision resistance. Finding strings 𝑚1 and 𝑚2 such that ℎ𝑎𝑠ℎ(𝑚1)  =  ℎ𝑎𝑠ℎ(𝑚2). A cryptographic 

hash function should make this infeasible. In the context of Encrypted Search, this does not seem 

especially relevant to enable any form of attack31. 

Maximum likelihood attack. Instead of mounting an attack that depends on finding cryptographic 

hash collisions, an adversary with access to hidden query histogram data can mount a maximum 

likelihood attack. 

Suppose there is a sample of 𝑛 independent and identically distributed observations 𝑡 – that is, a 

history of query terms – coming from some distribution 𝑓, where 𝑓 is a probability mass function 

denoting how probable a randomly sampled query term 𝑡 is. 

𝑃[randomly sampled query term is 𝑡] = 𝑓(𝑡) 

Thus, the probability of seeing a particular history of terms 𝑡1, 𝑡2, … , 𝑡𝑛 is32: 

𝑃[𝑡] = 𝑃[𝑡1 ∧ 𝑡2 ∧ …∧ 𝑡𝑛] = 𝑓(𝑡1)𝑓(𝑡2)…𝑓(𝑡𝑛) 

Each term 𝑡 is mapped to a hidden term ℎ. The objective of the adversary is to find a function 𝑔 

which maps each hidden term ℎ to a term 𝑡. 

𝑔(ℎ) =

{
 
 

 
 
𝑡𝑖1  𝑖𝑓 ℎ = ℎ1
𝑡𝑖2  𝑖𝑓 ℎ = ℎ2

.

.

.
𝑡𝑖𝑛  𝑖𝑓 ℎ = ℎ𝑛

, 𝑡𝑖𝑗 ≠ 𝑡𝑖𝑘  𝑖𝑓 𝑗 ≠ 𝑘 

To accomplish this goal, we simulate an adversary in which distribution 𝑓 is known (and, in the 

simulation, is a Zipf distribution); since 𝑓 may be estimated by examining queries in an information 

retrieval system that does not use hidden queries, it is plausible the adversary can learn a 

reasonable approximation of 𝑓. 

For a given �̃� ∈ 𝑔, the probability of seeing a particular history of hidden terms ℎ is: 

𝑃[ℎ] = 𝑃[ℎ1 ∧ ℎ2 ∧ …ℎ𝑛] =∏ 𝑓(�̃�(ℎ𝑖))
𝑛

𝑖=1
 

To discover the most likely mapping function �̃� ∈ 𝑔, the adversary will use maximum likelihood 

estimation; that is, it will explore the space of 𝑔 and choose a �̃� which maximizes the probability33 of 

seeing ℎ. 

�̃� = argmax
𝑔

∏ 𝑓(𝑔(ℎ𝑖))
𝑛

𝑖=1
 

                                                           
31 Thus, Encrypted Search is not vulnerable to birthday attacks. 
32 Since order is irrelevant (i.i.d. distribution), the actual probability is 

𝑛!

( 𝑘1!𝑘2!…𝑘𝑛!)
𝑓(𝑡1)𝑓(𝑡2) …𝑓(𝑡𝑛), where 𝑘𝑖  

represents how many times 𝑡𝑖  appears in the query history set. However, 
𝑛!

( 𝑘1!𝑘2!…𝑘𝑛!)
 is a constant for a given 

history of 𝑛 and 𝑘, so we can safely ignore it in our maximum likelihood attack. 
33 When simulating the adversary, the log of the maximum likelihood will be used instead. 
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Since the space of 𝑔 is 𝑂(𝑛!), a subset of the space must be explored which has a high likelihood of 

finding local maxima. In the simulations, we use a hill-climbing algorithm, in which the neighbors to 

a point in this space is operationally defined as the swapping of any two 𝑡𝑖𝑗  and 𝑡𝑖𝑘  in �̃�. 

Note that an excellent initial starting point in this space, especially given a sufficient number of 

samples, is to collect all of the hidden terms, sort them by frequency, and pair them up to the terms 

𝑡 ∈ 𝑓 sorted by probability. However, we do not use this initial estimator in the simulation34. 

Multiple secrets and query obfuscations. When we add 𝑚 secrets per term, i.e., hidden terms for term 𝑡 

consist of the set {ℎ(𝑡|𝑠𝑒𝑐𝑟𝑒𝑡1, 𝑠𝑒𝑐𝑟𝑒𝑡2, … , 𝑠𝑒𝑐𝑟𝑒𝑡𝑚} , then 𝑔 has the form such that each plaintext 

term maps to 𝑚 hidden terms. Thus, the space of 𝑔 is now 𝑂((𝑛𝑚)!) instead of 𝑂(𝑛!), and it is 

expected that more samples of hidden terms will be needed for a given level of accuracy (where 

accuracy is defined as the percentage of hidden terms which have been correctly mapped to 

plaintext terms). 

Furthermore, when we add 𝑘 obfuscations to the vocabulary of hidden terms (without multiple 

secrets), 𝑔 takes the form: 

𝑔(ℎ) =

{
 
 
 
 
 

 
 
 
 
 
𝑡𝑖1  𝑖𝑓 ℎ = ℎ1
𝑡𝑖2  𝑖𝑓 ℎ = ℎ2

.

.

.
𝑡𝑖𝑛  𝑖𝑓 ℎ = ℎ𝑛
𝑜 𝑖𝑓 ℎ = ℎ𝑛+1

.

.

.
𝑜 𝑖𝑓 ℎ = ℎ𝑛+𝑘

, 𝑡𝑖𝑗 ≠ 𝑡𝑖𝑘  𝑖𝑓 𝑗 ≠ 𝑘 

In the above function 𝑔, ℎ𝑛+1 to ℎ𝑛+𝑘 do not actually map to any plaintext term; they all map to 

class obfuscation. Thus, if a specific set of 𝑘 hidden terms map to class obfuscation, there is only one 

way for each of those hidden terms to be mapped to it. Thus, the space for 𝑔 is 
(𝑛+𝑘)!

𝑘!
= 𝑃(𝑛 +

𝑘, 𝑛). This is equal to or larger than 𝑛! for all non-negative integer values of 𝑛 and 𝑘; as a degenerate 

case, when 𝑘 =  0 (no obfuscations), it reduces to 𝑛!. 

Obfuscations introduce additional unknowns for the adversary that either must be given or 

estimated. As with the distribution of plaintext terms being given, the probability that a random 

hidden term is an obfuscation term will also be given. That is, obfuscation rate =

𝑃[𝑜𝑏𝑓𝑢𝑠𝑐𝑎𝑡𝑖𝑜𝑛]  =  𝑐, 0 <  𝑐 <  1. 

There are many ways to complicate matters for the adversary when dealing with obfuscations, e.g., 

making it so that the distribution of individual obfuscation hidden terms are similar to the 

distribution of non-obfuscated hidden terms. However, in our experiments, each obfuscation term 

has a uniform probability. 

                                                           
34 If this is done, using multiple secrets and obfuscations would result in an even greater advantage with 
respect to mitigating the effectiveness of maximum likelihood attacks. 



37 
 

When combining both obfuscations and secrets, the space of 𝑔 is 
(𝑛𝑚+𝑘)!

𝑘!
= 𝑃(𝑛𝑚 + 𝑘, 𝑛𝑚). In any 

case, the space of 𝑔 explodes as 𝑚 or 𝑘 grows (the original space was already exponential with 

respect to 𝑛). In our experiments (see chapter 4), we only consider increasing 𝑚 or 𝑘 separately, i.e., 

when increasing 𝑘, 𝑚 is fixed at 1, and when increasing 𝑚, 𝑘 is fixed at 0. 

Document confidentiality leaks (reconstructing documents from secure index information). There are 

many possible ways an adversary could compromise the confidentiality of the secure indexes. First, 

the adversary needs some way to meaningfully query the secure index; it can do this with the 

mapping learned in using maximum likelihood estimation, or it may simply have access to one or 

more secrets (e.g., the adversary can be a legitimate user). Once the adversary has the capability to 

meaningfully query secure indexes, it may systematically analyze the information contained in them 

to classify or (partially) reconstruct the confidential documents. 

A secure index contains an approximation of a document’s word35 frequencies without revealing 

which words are in the document. In addition, it may contain location information about each of the 

words. If the secure index only provides approximate frequency information, then a line of attack 

may consist of the following steps. First, sample from a word distribution to automatically 

determine (via queries) some fraction of the unigrams or bigrams in the given document and their 

respective frequencies. Then, using a bag-of-words model, classify the document, e.g., 

𝑃[medical document | bag of words]36. More specific classes are possible also, e.g., a single 

plaintext document can serve as a class. 

However, more sophisticated attacks exist. For instance, note that bigrams are more informative 

feature classifiers than unigrams. Moreover, trigrams are more informative than bigrams. Indeed, 

the larger the n-gram, the more informative it may be as a feature. The limiting case for this is an n-

gram the size of an entire plaintext document. Finding a match on this in a secure index would 

indeed be very informative. 

With these insights as motivation, the adversary could use a secure index’s bigrams in conjunction 

with a language model to partially reconstruct a document from the information contained in its 

secure index. First, the adversary can use a generative language model, like the trigram language 

model, to probe the secure index for plausible n-grams. For instance, if the adversary finds a positive 

hit on the bigram “A B”, this information can be used to generate plausible trigram phrases, e.g., 

sample word x from the conditional distribution, P[x | “A”, “B”]. If “C” is plausible given the previous 

two words were “A” and “B”, then check for a hit on the trigram phrase “A B C”. If this trigram tests 

positively in the secure index then generate and test plausible 4-gram phrases by sampling from the 

distribution, P[x | “B”, “C”]. 

Repeating the above steps, a large set of n-gram phrases (that test positive in the secure index) may 

be constructed. Furthermore, some of the discovered 𝑛-grams may overlap in some way, in which 

case the adversary can automatically stitch the pieces together in various ways. The plausibility of a 

stitching can be estimated using the language model, especially if multiple consistent stitchings of 

the same size are possible. 

                                                           
35 Actually, a secure index using a biword model stores the unigrams (words) and bigrams in a document. 
36 On the other hand, this may be a desirable search method. See Topic searching in chapter 0. 
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Already, this may reveal a significant amount of details about the document. However, if the secure 

index also provides location information, the adversary has a much easier job. If exact location 

information is provided for each word, then as the adversary finds words as previously described, it 

puts them in their proper place (like a jig-saw puzzle). As words are placed, larger and larger n-grams 

are constructed, and the language model can be used to generate plausible candidates for the 

missing words. Alternatively, since the problem has been vastly simplified, the adversary may 

exhaustively check each word in a dictionary. 

Since false positives are possible, each position may have multiple candidates. To deal with this 

eventuality in a reasonably straightforward way, the adversary can find an assignment of candidates 

that (approximately) maximizes the likelihood (given a language model) of a given assignment of 

candidates to each position. 

Assuming this form of attack is reasonably successful37, the reported positions for a word should 

have some degree of uncertainty—e.g., only reporting that a word falls within some range (block), 

as PSIB and BSIB do, or scrambling the positions in some random way, as PSIP does. 

Problems with the block-based approach. The block-based approach used in PSIB and BSIB reduces 

the problem to treating each block as a small document, and solving each one independently 

without location information using the techniques described on page 37. Since the document is 

much smaller, the reconstruction effort may be significantly easier than trying to do this for the 

entire document. 

To paint a clearer picture, if the document consists of 𝑁 words, and the words are segmented into 𝑘 

blocks, then there are 𝑛 =  𝑁/𝑘 words per block. If all 𝑛 words in the block are discovered (and 

ignoring word multiplicities), then there are 𝑛!  = ⌈
𝑁

𝑘
⌉ ! ways to order a block (and globally there are 

(𝑛!)𝑘  ways to arrange the words in the entire document given the constraint information provided 

by the blocks). Thus, for each permutation, the adversary calculates its likelihood given the chosen 

language model (e.g., trigram language model), and saves the permutations with the highest 

likelihoods. Since 𝑛! and (𝑛!)𝑘  represent vastly smaller spaces than 𝑁!, the adversary should find the 

reduced problem significantly easier. For instance, suppose 𝑁 = 500 and 𝑘 = 10, then 𝑛! =

(
500

10
) ! = 50!, and (𝑛!)𝑘 = (50!)10, as opposed to 𝑁! = 500!, which is a factor of 1.8 × 10489 times 

the size of the reduced space. Moreover, it is a factor of 4.0 × 101069 times the size of each 

independent block. 

                                                           
37 Unlike where we simulate an adversary performing an MLE attack on the query steam, we only provide a 
theoretical analysis of attacks exploiting the approximate information in the secure indexes. 
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An alternative solution. A significant problem with the block-based approach is the adversary’s ability 

to treat each block as a separate, independent problem—this has the effect of reducing the 

adversary’s curse of dimensionality. PSIP is designed, in part38, to overcome this problem. In PSIP, 

there is no such block delineation—instead, words are offset from their true position according to 

some random variate. This makes it harder to treat the document as a set of smaller independent 

sub-problems. 

For instance, suppose document 𝐷 = “A B C D E F G H”. To simplify matters for 𝐷’—the secure index 

approximation of 𝐷—suppose we can swap any word in 𝐷 with any other word in 𝐷 as long as the 

words final position is within two units of its starting position. Then, let scrambled document 𝐷’ = “B 

A E D C G F H”. Is it possible to break this larger problem down into two smaller independent 

problems? 

𝑑1’ = “B A E D” and 𝑑2’ = “C G F H” will not work since, in the original document, the first set should 

contain elements from {A, B, C, D}, but it is missing B and has an additional E. Any 4-gram ordering 

on these two sub-problems cannot match the ordering in the original document; indeed, in this 

case, the only sub-ordering that matches the original ordering is “A B” and “F G H”. These two sets 

cannot be stitched together since they have no overlapping components. 

Another possible division is 𝑑1’ = “B A”, 𝑑2’ = “E D C”, and 𝑑3’ = “G F H”. This is a legitimate way to 

reduce the larger problem into a set of smaller independent problems, but the adversary has no way 

of knowing this beforehand. For instance, if instead A had been swapped with C, this would no 

longer be a legitimate partition. 

This will blow up the search space for the adversary. The adversary may still use the location 

information to do things like eliminate impossible stitchings, but it is more difficult to use the 

location information to create independent sub-problems. Of course, it may be acceptable to reduce 

the original document into sub-problems with a size dependent upon the location uncertainty and 

settle for more approximate solutions. It is also possible to parameterize the segmentation points 

and include those as additional parameters to optimize, but this has the effect of blowing up the 

search space even more. 

On the effect of false positives. As demonstrated in the previous section, false positives create a 

problem for the adversary attempting to (partially) reconstruct a document from the information in 

its secure index. 

Given a secure index of with 𝑁 words, each unique (in order to simplify the discussion), there are 𝑁! 

permutations. The adversary wishes to find some 𝑁 words (which will test as positive in the index) 

and then find a permutation that maximizes the likelihood of observing that sequence of words 

given a chosen language model. 

An exact solution is already computationally intractable—𝑂(𝑁!). Adding false positives complicates 

matters even more for the adversary, although it is still in 𝑂(𝑁!). Suppose false positives occur at a 

rate of 0 < 𝜀 < 1, and the adversary wishes to perform an exhaustive search on the secure index by 

iterating through a dictionary consisting of 𝑁 + 𝑘 words, where the 𝑁 words in the document re a 

subset of the 𝑁 + 𝑘 words in the dictionary. Then, to find the 𝑁 words in the document, 𝑁 of those 

                                                           
38 It is also designed to provide more accurate location information by allowing the mean error of approximate 
word positions to be 0—i.e., PSIP changes each word’s position with respect to its true mean. 
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words from the dictionary will necessarily be true positives and it is expected that there will be 

‖𝜀 ∙ 𝑘‖ false positives. 

In total, it is expected that 𝑁 +  𝜀 ∙  𝑘 words will positively match. Each one of these words is a 

candidate, and thus instead of the adversary needing to explore a space consisting of 𝑁! 

possibilities, the adversary must explore a space of 
(𝑁 + ‖𝜀 ∙ 𝑘‖)!

‖𝜀 ∙ 𝑘‖!
= 𝑃(𝑁 + ‖𝜀 ∙ 𝑘‖,𝑁) possibilities. The 

degenerate case 𝑘 =  0 evaluates to 𝑁!, but as 𝑘 grows it quickly diverges from 𝑁! for a given 𝜀. 

Thus, we see that on the one hand, a high false positive rate mitigates reconstruction attacks. On 

the other hand, as some of the experiments were designed to probe, a high false positive rate may 

cause the searching apparatus to return unacceptably poor results if it is unduly affected by the false 

positive hits. This represents a trade-off—the least disclosing 𝜀 is 1 and the most accurate 𝜀 is 0. 

Secure index poisoning. The intent of poisoning a secure index is to mitigate frequency analysis 

attacks and jig-saw-like (using location information) attacks. Namely, we wish to cause the 

hypothetical adversary described previously to be less successful at reconstructing a document from 

the information in its secure index. This can be done in a few different ways. 

Fake terms. We will insert fake terms (unigrams and bigrams) into a secure index. Theoretically, with 

respect to its mitigating effect on the threat posed by the adversary, this is similar to increasing the 

false positive rate. However, unlike increasing the false positive rate, this can be done in a way that 

should theoretically not affect search accuracy (as the experiments has corroborated). 

Approximate frequency information. Knowing precise frequency information is very informative for the 

adversary, as previously described. PSIB and BSIB naturally—as a byproduct of location 

uncertainty—provide approximate frequency information. However, PSIP and PSIF must be explicitly 

instructed to approximate frequencies. 

This constitutes an advantage for PSIP and PSIF, especially since it may be precisely controlled, e.g., 

give each trapdoor’s frequency a particular range of uncertainty. 

Approximate location information. Knowing precise location information is very informative for the 

adversary, as previously described. This is controlled by location uncertainty. Note that PSIF does 

not store location information, so this parameter is not applicable to it. 



41 
 

CHAPTER IV 

EXPERIMENTS 

Our experiments are intended to explore how one or more inputs relate to one or more outputs. To 

keep things simple, our experiment designs consist of changing one input (while the other inputs are 

held constant) and observing how one or more outputs respond with respect to the change in the 

given input. 

INPUTS 
 Secure index. The type of secure index. It is either PSIB, PSIF, PSIP, or BSIB. In most of the 

experiments, multiple secure indexes and their respective outputs are compared to one 

another. 

 

 Documents (documents/corpus). Number of documents in the corpus. A variable corpus size 

should effect most outputs in a linear way, e.g., MinDist* lag time should depend linearly on the 

number of documents (assuming documents are of fixed size). However, MinDist* scoring and 

BM25 scoring may be effected in a non-linear way, thus we make this variable to see how such 

outputs respond. 

 

 Pages. The number of pages in each document in the corpus. A variable page count will be used 

to see how each secure index scales with document size with respect to a number of 

parameters. 

 

 Terms/query. The number of terms in a query, where a term is either a keyword or an exact 

phrase. 

 

 Words/term. The number of words in each term. 

 

 Secrets. Number of secrets that can be used to search for query terms in the secure index 

database. 

 Obfuscations. This input is used in two different senses. In the context of the attack simulation, 

this input refers to the number of unique obfuscations; otherwise, it refers to the number of 

obfuscated terms added to a query. 

 

 Obfuscation rate. In history attack simulations, obfuscation rate refers to the probability that a 

random term in the history set will be an obfuscated term. This is the parameter that, in 

practice, will also be used by the client’s hidden query constructor, i.e., add obfuscations to 

hidden queries such that for large hidden query histories: 

obfuscation rate =
∑ 𝑐𝑜𝑢𝑛𝑡(𝑜𝑏𝑓𝑢𝑠𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠 ∈ 𝑞)𝑞∈ℎ𝑖𝑠𝑡𝑜𝑟𝑦

∑ 𝑐𝑜𝑢𝑛𝑡(𝑡𝑒𝑟𝑚𝑠 ∈ 𝑞)𝑞∈ℎ𝑖𝑠𝑡𝑜𝑟𝑦
 

 

 Location uncertainty. Unigram or bigrams in the document have exact positions. Exact positions 

reveal too much information about the contents of the document; thus, positions should only 

be known approximately. Location uncertainty refers to range of uncertainty (in word positions) 
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of a term’s true location (see page 37). 

 

 False positive rate. A word not in a secure index document will have a probability (the false 

positive rate) of testing positively as belonging to it. This probability can be controlled by 

increasing or decreasing the input for false positive rate. On the one hand, a low false positive 

rate should improve search accuracy; on the other hand, a high false positive rate should 

improve confidentiality (e.g., more difficult for an adversary to reconstruct the document). 

 

 Junk percentage. This is the percentage of fake terms in a secure index, as described on page 40. 

 

 Relative frequency error. PSIB and BSIB implicitly approximate frequencies through their location 

uncertainty (block size). However, PSIP and PSIF can explicitly control this parameter. 

 

 Vocabulary size. The number of unique keyword search terms. In our adversary experiments, 

this is made to be relatively low number (~50) so that we can simulate an adversary 

implementing the maximum likelihood attack described on page 35. 

 

 Query history size. In our adversary simulations, we simulate an adversary employing a 

maximum likelihood attack. The more data (history of query terms) the adversary has access to, 

the more the data begins to look like the true distribution and thus the more accurate the 

maximum likelihood estimation becomes. 

 

 Absolute location error. A secure index should only provide approximate location information, 

thus 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = ‖𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛‖. 

OUTPUTS 
 Secure index size. The size (e.g., bytes) of the secure index database for a corresponding corpus 

(collection of documents). 

 

 Build time. Time taken to build the secure index database for a given corpus. 

 

 Load time. Time taken to load a secure index database for a given corpus. 

 

 Boolean search precision. Proportion of retrieved documents relevant to the Boolean search (all 

of the terms must be in a relevant document). 

 

 Boolean search recall. Proportion of relevant documents retrieved. 

 

 BM25/MinDist* rank-ordered MAP. 

 

 BM25/MinDist*/Boolean search lag time. Time taken for the corresponding kind of query to 

complete. 
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 Compression ratio. The ratio of secure index size to the size of the actual document the secure 

index is representing. Smaller values are preferable. 

 

 Accuracy. This output is for the adversary simulations. It refers to proportion of hidden terms 

that the adversary is able to learn to accurately map to plaintext terms. 

PLATFORMS 
Table 6 Testbed System for Experiments 

MACHINE A  

OPERATING SYSTEM Windows 7 Service Pack 1 
PROCESSOR AMD A6-6400K APU 3.9GHz 
INSTALLED MEMORY (RAM) 8.00 GB 
STORAGE DEVICE Kingston SSDNow V300 Series SV300S37A/60G 2.5" 60GB SATA III 

SSD 
COMPILER Visual Studio 2013; 32-bit target; command line = ” /MP /GS /GL 

/W3 /Gy /Zi /Gm- /O2 /fp:precise /GF /GT /WX- /Zc:forScope 
/arch:SSE2 /Gd /Oy- /Oi /MD” 

GLOBAL PARAMETERS 
 The number of unique words per corpus (corpus dictionary) is fixed at 10,000 words. The 

unique words in the dictionary follow a Zipf distribution, and they are randomly generated with 

an average length of 6.5 alphabetic characters. Such a dictionary is uniquely constructed for 

each trial of every experiment. 

 

 For BM25 scoring, parameter 𝑏 is set to 0.75 and parameter 𝑘1 is set to 1.2. As discussed on 

page 31, these are typical values. 

 

 Each document of size 𝑛 (𝑛 words) in the corpus separately samples 𝑚 = 12𝑛
1

2 unique words 

from the corpus dictionary, conforming to Heap’s law with 𝐾 = 12 and 𝛽 = 0.5. Once 𝑚 unique 

words are sampled, they are renormalized to make them into a proper distribution. It is this 

distribution that is used to generate the sequence of words for a document. 

 

We did this with the intention of making each document approximately follow a Zipf 

distribution, but with a different subset of words to account for different authors with different 

but overlapping vocabularies. In hindsight, it would have been sufficient (and perhaps 

preferable) to have simply sampled n words directly from the corpus dictionary. 

 

 When calculating the outputs for a given input we always use a query set consisting of 30 

queries. We then average the outputs over all of those queries where appropriate. 

 

 For each query term in a query in a query set, we seed a document in the corpus with that term 

with probability p = 0.2 except where otherwise noted. Thus, for a query with 𝑘 terms, the 

probability that one or more of its terms occurs in the document is 𝑃[𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒] = 1 −

𝑃[𝑛𝑜𝑛𝑒] = 1 − (1 − 𝑝)𝑘. For 𝑘 =  1, 𝑃[𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒]  =  𝑝 =  0.2; for 𝑘 =  2, 
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𝑃[𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒]  =  2𝑝 − 𝑝2 = 0.36. Thus, if a query consisting of 𝑘 terms seeds a corpus of 

size 𝑁, then on average 𝑁(1 − (1 − 𝑝)𝑘) documents will be seeded with the query term.  

 

In general, this should mean when doing a mean average precision calculation, the expected 

number of documents relevant to a query with 𝑘 terms will be 𝑁(1 − (1 − 𝑝)𝑘). The remainder 

should be non-relevant, i.e., MAP scores of 0, which means it is irrelevant how they are ranked 

and can thus be ignored in the mean average precision calculation. Of course, if the secure index 

does score them with a score of non-zero, that is a sign of a false positive, and should and does 

subsequently degrade the MAP score. This happens with probability 1 − (1 − 𝜀)𝑘 for those 

documents which are nonrelevant, where 𝜀 is the false positive rate. On average, for a query 

with 𝑘 terms, this will happen 𝑁(1 − 𝑝)𝑘{1 − (1 − 𝜀)𝑘} times. 

  

Once a document is targeted to be seeded by a given query term, all such occurrences of the 

term will occur within a window size of 𝑤 ~ 𝑈(𝑚𝑖𝑛(𝑠𝑖𝑧𝑒(𝑑𝑜𝑐), 2000),𝑚𝑎𝑥(𝑠𝑖𝑧𝑒(𝑑𝑜𝑐), 6000)) 

except where otherwise noted. 

Finally, the number of occurrences of the term within that window will be 𝑛 =  𝑚𝑖𝑛 {1,𝑤
4

5 ×

𝑈𝐼𝑁𝐹(0.01, 0.001)}. 

 

 When measuring precision, MinDist* MAP, or BM25 MAP, each query in the query set (as 

previously mentioned, there are 30 queries per query set in total) is submitted 10 times for the 

block-based secure indexes, and the average of those 10 MAP scores is taken to be the actual 

output. 

ADVERSARY SIMULATION RESULTS 
In this experiment section, we explore how effective a simulated adversary is at compromising 

query privacy using the maximum likelihood estimation (MLE) attacks described on page 35. 

Obfuscations vs Accuracy 

EXPERIMENT DETAILS 

INPUT unique obfuscations (unique strings in the uniform distribution being sampled 
from) 

OUTPUT accuracy (proportion of hidden terms correctly mapped to the corresponding plaintext 
term) 

CONSTANTS 1 secret 
50 word search vocabulary (every query composed from same 50 unique terms)  
50,000 query term history (to be used as data points in MLE) 
150,000 samples (in the Monte Carlo simulation to approximate MLE) 

Figure 9 Experiment #1 

In this experiment, we are interested in seeing how accurately a hypothetical MLE adversary can 

learn a mapping from hidden terms to plaintext query terms with respect to the unique number of 

obfuscations for several obfuscation rates (which is just the probability that a random query term 

will be an obfuscated term). Whenever an obfuscation is injected into a query, we sample the 

obfuscated term from a discrete uniform distribution consisting of 𝑁 unique strings (see page 31). 

From Figure 10, one may conclude that for a given obfuscation rate, there comes a point at which 

increasing the number of unique obfuscations has little effect on mitigating the adversary. The lower 
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the obfuscation rate, the sooner this point is reached. Additionally, the lower the obfuscation rate, 

the larger the adversary‘s limiting accuracy as 𝑛 goes to infinity.  

For high obfuscation rates, it is a mistake to let the number of unique obfuscations 𝑁 be small. We 

imagine the reason for this is related to the fact that the obfuscations will tend to have a higher 

frequency than most of the real terms if 
𝑃[𝑜𝑏𝑓𝑢𝑠𝑐𝑎𝑡𝑖𝑜𝑛]

𝑁
 is larger than the probability for most real 

terms. Thus, mapping a non-obfuscated hidden term to the obfuscation class will cause the 

likelihood of seeing the given history much lower. This presents another area to explore. Instead of 

sampling the obfuscated terms from a uniform distribution, sample them from a distribution, which 

is designed to resemble, in some way, the real distribution such that incorrect mappings are less 

penalized in the MLE calculation. 

In Figure 11, we see that (with the same fixed constants as before) the optimal combination of 

number of obfuscated terms and obfuscation rate—the combination that minimizes the adversary’s 

prediction accuracy—is 50 obfuscated terms and 0.2 obfuscation rate. 

 

Figure 10 Unique Obfuscations vs Accuracy of Adversary Using MLE Attack 
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Figure 11 Obfuscation Rate vs Accuracy of Adversary Using MLE Attack 

Secrets vs Accuracy 

EXPERIMENT DETAILS 

INPUT secrets 
OUTPUT accuracy (proportion of hidden terms correctly mapped to the corresponding 

plaintext term) 
CONSTANTS no obfuscations 

50 word search vocabulary (every query composed from same 50 unique terms)  
50,000 query term history (to be used as data points in MLE) 
150,000 samples (in the Monte Carlo simulation to approximate MLE) 

Figure 12 Experiment #2 

In this experiment, we are interested in seeing how effective secrets are at mitigating the adversary 

discussed on page 35. Increasing secrets does seem to mitigate the adversary’s MLE attack, and as 

shown in the experiment on page 53, it comes at little to no cost to MAP accuracy and query lag 

time (except for BSIB’s lag, but only slightly). However, it does cost in terms of inflating the secure 

index size. 

Additionally, the marginal value of secrets has diminishing returns. Eventually, there comes a point 

where it hardly makes a difference at all, but you are likely to run out of memory space before that 

happens. 

It is worthwhile pointing out that the secrets for a given term are sampled from a discrete uniform 

distribution. This probably limits the effectiveness of having secrets. The adversary may be able to 

infer the underlying plaintext distribution using big data and statistics, but the adversary cannot 

know (just as with obfuscations) the distribution of an individual user’s secret distribution which 

may be randomly re-defined periodically (not only an unknown distribution, but a moving 
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distribution). Indeed, each user can have their own way of sampling secrets (and the same is true for 

sampling obfuscated terms). We expect that any experimental outcomes that do this would look 

even more promising. 

 

Figure 13 Secrets vs Accuracy of Adversary Using MLE Attack 

History Samples vs Accuracy 

EXPERIMENT DETAILS 

INPUT secrets, history size 
OUTPUT accuracy (proportion of hidden terms correctly mapped to the corresponding 

plaintext term) 
CONSTANTS no obfuscations or obfuscation rate =  0.2 

50 word search vocabulary (every query composed from same 50 unique terms)  
150,000 samples (in the Monte Carlo simulation to approximate MLE) 

Figure 14 Experiment #3 

As the number of query samples (history) increases, so too does the predictive accuracy of the 

adversary as expected; the more data the adversary has to learn the model (the mapping from 

hidden terms to plaintext terms), the more accurate the model should be. 

Indeed, in Figure 17, for a history size of 512k, if only using one secret the adversary has a 93% 

accuracy rate. Increasing the number of secrets to 16 reduces the adversary’s accuracy rate to 36%. 

This is certainly an improvement, but preferably, it would be lower yet. Granted, this is a toy 

problem; there are only 50 words in the user’s search vocabulary, for instance. However, according 

to equation for the curve representing 512k history samples, we would need over 700 secrets to 

reduce the adversary’s accuracy to 10%. Since secrets inflate the size of the index, this is not a 

viable option. 

accuracy ≈ (1/2)∙ secrets-1/3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 6 11 16 21 26 31 36 41 46

A
cc

u
ra

cy

Secrets

Secrets vs Accuracy



48 
 

However, as discussed elsewhere, if the secrets were not sampled uniformly, much better results 

could probably be realized. And, of course, secrets may be combined with obfuscations without 

inflating the secure index size. 

 

Figure 15 History with Secrets vs Accuracy of Adversary Using MLE Attack 

  

Figure 16 History vs Accuracy of Adversary Using MLE Attack 
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Figure 17 Number of Secrets vs Accuracy of Adversary Using MLE Attack 

Vocabulary Size vs Accuracy 

EXPERIMENT DETAILS 

INPUT vocabulary size (number of unique keyword search terms) 
OUTPUT accuracy (proportion of hidden terms correctly mapped to the corresponding 

plaintext term) 
CONSTANTS no obfuscations 

150,000 samples (in the Monte Carlo simulation to approximate MLE) 
Figure 18 Experiment #4 

In Figure 19, we see that as the vocabulary size increase, as expected in general less accuracy is 

achieved. Also as expected, we see that more secrets also consistently degrades the accuracy of the 

attack. 
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Figure 19 Vocabulary Size vs Accuracy of Adversary Using MLE Attack 

SECURE INDEX RESULTS 
In this experiment section, we comprehensively compare and analyze the performance of the 

different secure index types according to a number of different inputs and outputs. 

BM25 MAP “Page One” Results 

EXPERIMENT DETAILS 

INPUT location uncertainty vs BM25 Top 10 MAP (first page of results) 
OUTPUT BM25 Top 10 MAP 
CONSTANTS 1 secret, 0 obfuscations 

0.001 false positive rate 
1 or 2 words/term, 3 terms/query 
16 pages, 1000 documents (documents/corpus) 

TESTBED machine A 
Figure 20 Experiment #5 

This is the “page one” Google test. Search users do not want to dig through multiple pages to find 

what they want. Indeed, studies have shown that Google’s second page of results only receives 

1.5% of click-through rate. 
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In this experiment, we get the top 10 results according to the canonical index, and then get the top 

10 results each secure index and restrict the mean average precision to only those top 10. This is a 

much more demanding measure than taking the mean average precision over all of the results. 

In Figure 21, PSIP (and PSIF, which tracks PSIP but is not included in this experiment) came out on 

top, as expected, since it can optionally retain perfect frequency information for words (unigrams 

and bigrams) in the document (although false positives are still possible). Indeed, it rarely scored 

under 95%. Also, note that PSIP and PSIF are independent of location uncertainty—PSIF does not 

even store location information, and PSIP’s frequency information is independent of the location 

uncertainty. The block-based indexes, PSIB and BSIB, also score above 95%, but their scores 

expectedly trail off as the location uncertainty increases. 

To ground the results in Figure 21, let us consider how a completely random top 10 list would score 

on MAP. In Figure 22, we return 10 random documents out of 250 documents and then calculate its 

MAP score (note that the real experiment is even more unforgiving since it draws the top 10 results 

from 1000 documents). Figure 22 shows a histogram of the results. Note that over 90% of the 

results have a MAP between 0.0 and 0.1. Compare the random results with the results returned 

from the secure indexes in Figure 21. They all do remarkably well by comparison—clearly much 

better than random since no trial out of the millions tested had a score higher than 0.4 in the 

random tests, while no trial had a score less than 0.7 on the secure index tests. 

 

Figure 21 Location Uncertainty vs Accuracy of Top 10 BM25 Search Results 
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Figure 22 Mean Average Precision of Random Results 

MinDist* “Page One” Results 

EXPERIMENT DETAILS 

INPUT location uncertainty vs MinDist* Top 10 MAP (first page of results) 
OUTPUT MinDist* Top 10 MAP 
CONSTANTS 1 secret, 0 obfuscations 

0.001 false positive rate 
1 or 2 words/term, 3 terms/query 
16 pages, 1000 documents (documents/corpus) 

TESTBED machine A 
Figure 23 Experiment #6 

Once again, we see PSIP pulling ahead. However, discouragingly, no matter which secure index is 

chosen, location uncertainty must be quite modest for MinDist* to achieve competent scores.  

The MinDist* measure is more sensitive to location uncertainty than BM25 is to frequency 

uncertainties. This makes sense. When two terms are only separated by a couple of words, they are 

likely mutually relevant, but as the distance between them grows they rapidly decrease in mutual 

relevance. MinDist* captures this intuition: it only scores documents high when they contain the 

terms (in the query) at a sufficiently close distance. 

However, when location uncertainty is moderately large, two terms that are approximated to be 

only a couple words apart may actually be much further apart (even pages apart). This can have a 

large, negative impact on the MinDist* ranked output. Unfortunately, large location uncertainties 

are desirable for confidentiality (see page 37). 

Despite these observations, the secure indexes—especially PSIP—still do reasonably well (e.g., they 

do much better than random chance, as demonstrated in Figure 22). Moreover, encrypted search 

users will probably be more willing to dig deeper into the results to find what they are searching for.  
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Note that the intuition behind MinDist* proximity sensitivity is the primary motivation for PSIM (see 

page 28), which can optionally preserve perfect minimum pairwise distance information for terms in 

the document that are up to 𝑘 words apart. 

 

Figure 24 Location Uncertainty vs Accuracy of Top 10 MinDist* Search Results 

Secrets vs Compression Ratio, Build Time, and Load Time 

EXPERIMENT DETAILS 

INPUT secrets 
OUTPUT compression ratio (ratio of secure index size to document size), load time, build 

time 
CONSTANTS 12 pages, 256 location uncertainty 

Figure 25 Experiment #7 

The only outputs secrets affected were build time, load time, and secure index size. For PSIB and 

PSIF, load time is nearly constant with respect to secrets. However, all of the secure indexes flatten 

out as the secrets increase (as they do for build time, also). 

The compression ratio output is linear with respect to the number of secrets; this certainly makes 

sense, as each secret variation of each term will be dedicated a constant number of bits. 
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Figure 26 Number of Secrets vs Compression Ratio 

 

Figure 27 Number of Secrets vs Secure Index Build Time 
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Figure 28 Number of Secrets vs Secure Index Load Time 

False Positive Rate vs BM25 MAP and Precision 

EXPERIMENT DETAILS 

INPUT pages (~250 words/page) 
OUTPUT BM25 MAP, precision 
CONSTANTS 1 term/query, 1 or 2 words/term 

1 secret, 0 obfuscations 
128 location uncertainty 
0.001 false positive rate 
12 pages, 1000 documents (documents/corpus) 

TESTBED machine A 
Figure 29 Experiment #8 

While not much space is saved by decreasing the false positive rate, the primary advantage in having 

a high false positive rate is its effect on confidentiality. The higher the false positive rate, the less 

certain the information in the secure index is (see page 39 for more analysis). 

On the one hand, Figure 30 paints an encouraging picture for BM25 scoring. Indeed, false positives 

occurring even a quarter of the time on negative examples still result in a BM25 MAP of ~0.7. And 

this is only for 1 term/query and 1 or 2 words/term; BM25 tends to perform better when given 

more terms, as other experiments demonstrate. 

On the other hand, Figure 31 paints a less encouraging picture for precision (for Boolean search). If 

false positives occur a quarter of the time here, only 50% accuracy is achieved. Compared to 

precision, BM25 is far less sensitive to the false positive rate. This makes sense; if a false positive 

happens when measuring precision, it will admit a term that should not be included in the result set, 

which will certainly effect its precision negatively. However, BM25 is ranking the documents. Thus, 

even if a document is falsely hitting on a search term, it is the order that counts—how the document 

is ultimately ranked. 
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For instance, since BM25 scoring accounts for “rarity” (see page 13), other documents in the corpus 

will also falsely hit on the term with probability39 0.25, which will cause the false hit to not be very 

discriminating—that is, it is not rare in the corpus since 25% of the documents have it. 

 

Figure 30 False Positive Rate vs BM25 Mean Average Precision 

 

Figure 31 False Positive Rate vs Precision 

  

                                                           
39 The probability that a search term appears in a document is ~0.25. In practice, BM25 may do better than 
our experiments suggest since we did not include particularly rare terms in the query set. 
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Obfuscations vs BM25 

EXPERIMENT DETAILS 

INPUT Obfuscations (per query) 
OUTPUT BM25 MAP, BM25 lag 
CONSTANTS 1 secret, 256 location uncertainty 

0.001 false positive rate 
12 pages, 1000 documents (documents/corpus) 
1 term/query, 1 or 2 words/term or 6 terms/query, 6 words/term 

TESTBED machine B 
Figure 32 Experiment #9 

In Figure 33, we plot obfuscations versus BM25 MAP on a rather large class of query—6 

terms/query, 6 words/term. PSIP and PSIF perform very close to 100% and each additional 

obfuscation per query only reduces BM25’s MAP score by 0.005%. PSIB and BSIB also do well and 

remain largely unaffected by the obfuscated terms as well. 

Figure 34 reveals that every obfuscated term added to the query increases the BM25 lag time by 

0.02 milliseconds compared to PSI-based indexes, which increase at a rate of 0.014 milliseconds per 

obfuscated term. Note that these lag times cannot be directly compared with the lag time reported 

in other BM25 experiments, as this experiment was conducted by a different machine. However, it 

does not seem unreasonably slow. Also, note that every one of the queries is slow compared to 

smaller, more typical queries performed in other experiments. 

Finally, Figure 35 shows BM25 MAP on a more modest set of queries consisting of 1 term/query and 

1 or 2 words/term, which results in an across the board reduction in the BM25 MAP score. As 

discussed elsewhere, BM25 generally does better on queries that are more complicated. 

Unfortunately, each additional obfuscated term injected into the query also has a larger negative 

impact on the BM25 MAP score, i.e., −0.008 versus −0.003. 

 

Figure 33 Obfuscations/Query vs BM25 MAP with 6 Terms/Query, 6 Words/Term 
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Figure 34 Obfuscations/Query vs BM25 Lag Time with 6 Terms/Query, 6 Words/Term 

 

Figure 35 Obfuscations/Query vs BM25 MAP with 1 Term/Query, 2 Words/Term 
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Obfuscations vs MinDist* 

EXPERIMENT DETAILS 

INPUT # Obfuscations (per query) 
OUTPUT MinDist* MAP 
CONSTANTS 1 secret, 256 location uncertainty 

12 pages, 1000 documents (documents/corpus) 
0.001 false positive rate 
6 terms/query, 1 or 2 words/term 

TESTBED machine B 
Figure 36 Experiment #10 

Earlier attack simulations demonstrated the effectiveness of obfuscations in mitigating attacks. 

Judging by Figure 37, increasing obfuscations have almost no effect on MinDist MAP scores. This is 

certainly welcome news—we can exploit obfuscations without incurring much, if any, loss in 

MinDist* accuracy. 

Figure 38 shows a linear relationship between obfuscations and MinDist* lag time. This makes 

sense; it is essentially the same increase in lag time expected from any additional query terms—

obfuscated terms or otherwise. 

Note that PSIP is pulling ahead in a majority of the benchmarks measuring lag time or mean average 

precision. This was expected; subsequent experiments will expand on why this is happening. 

 

Figure 37 Obfuscations/Query vs MinDist* Mean Average Precision 
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Figure 38 Obfuscations/Query vs MinDist* Lag Time 

Pages vs Secure Index Size 

EXPERIMENT DETAILS 

INPUT pages (~250 words/page) 
OUTPUT secure index size (bytes) 
CONSTANTS 1 secret, 256 location uncertainty 

0.001 false positive rate 
1000 documents (documents/corpus) 

TESTBED machine A 
Figure 39 Experiment #11 

As discussed elsewhere, PSIB is optimized for smaller documents. For PSIP and BSIB, every page is 

approximately 1700 and 1500 bytes respectively; their secure index sizes are linearly dependent 

upon their page counts. 

However, as demonstrated Figure 40 and Figure 41, the sparse bit vector representation used in the 

PSIB does well for small to moderate pages, but explodes as the pages increase past a certain point 

(~100 pages). It is quadratic with respect to page count rather than linear. For small page counts, 

the squared component is dominated by the linear component, but for large page counts the 

squared component dominates. 

The point of intersection between PSIB and BSIB is ~50 pages. This is the size of a relatively large 

document; for larger documents (e.g., books) with more than 50 pages, it may be advisable to 

segment them into smaller chunks. 
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Figure 40 Page Count vs Secure Index Size 

 

Figure 41 PSIB and BSIB Intersection for Pages/Document vs Secure Index Size 

Blocks vs Secure Index Size 

EXPERIMENT DETAILS 

INPUT blocks (block segments per document) 
OUTPUT secure index size (bytes); compression ratio (ratio of secure index size to document size) 
CONSTANTS 1 secret, 256 location uncertainty 

0.001 false positive rate 
1000 documents (documents/corpus) 

TESTBED machine A 
Figure 42 Experiment #12 

In the previous experiment, we examined how page count affected secure index size while location 

uncertainty was held constant at 256. This had the effect of increasing the number of blocks per 

bytes ≈ 1500 ∙ pages
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PSIB and BSIB as the page count increased. This motivates us to consider how the block count per 

PSIB and BSIB are affects secure index size. 

In Figure 43, we see that the lines for PSIB and BSIB cross at ~47 blocks. If the primary metric of 

interest is secure index size (as measured by memory allocation size), this point of intersection 

represents a dividing line. To the left of the line, PSIB is preferable; to the right of the line, BSIB is 

preferable. Note, however, that PSIB retains its significant advantage in other outputs, like query lag 

times. 

In Figure 44, we see that for a small number of blocks, PSIB is a small fraction—a quarter—the size 

of the actual document. However, it grows linearly as the block count increases. On the other hand, 

BSIB converges (to a first approximation) to a constant factor of ~0.75 the size of the document as 

the block count increases. 

A high block count is ideal for MinDist* and BM25 MAP accuracy—it reduces the location 

uncertainty—but there is a trade-off between such accuracy and the amount of information leaked 

about the document. 

PSIP does not represent a document as blocks; it represents a document as postings lists. Thus, 

location uncertainty can be adjusted to any desired value and PSIP’s file size (and query lag times) 

will remain the same. 

 

Figure 43 Blocks per PSIB/PSIB vs Secure Index Size 
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Figure 44 Blocks per PSIB/PSIB vs Compression Ratio 

Documents (per corpus) vs Corpus Secure Index Size 

EXPERIMENT DETAILS 

INPUT documents (per corpus) 
OUTPUT corpus secure index size (bytes) 
CONSTANTS 1 secret, 250 location uncertainty 

16 pages (per document) 
0.001 false positive rate 

TESTBED machine A 
Figure 45 Experiment #13 

For a reasonably large document consisting of 16 pages (4000 words, 250 words/page), we see that 

the average document is ~10.5 kilobytes for PSIB, ~16.8 kilobytes for PSIP, and ~23.3 kilobytes for 

PSIP. Note that, with that many pages and with that location uncertainty, the blocks per document 

is 16 for PSIB and BSIB; this is under the threshold of ~47 blocks under which PSIB is superior to 

BSIB. For a corpus of nearly 20,000 documents, the total corpus size is a little over 200 MB; the 

original corpus was 593 MB. 
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Figure 46 Documents per Corpus vs Corpus Size 

Pages vs Build Time 

EXPERIMENT DETAILS 

INPUT pages (~250 words/page) 
OUTPUT build time (milliseconds) 
CONSTANTS 1 secret, 256 location uncertainty, 0.001 false positive rate 

1000 documents (documents/corpus) 
TESTBED machine A 

Figure 47 Experiment #14 

In this experiment, we are interested in seeing how page count (~250 words/page) affects secure 

index build time. The byte-size of the document is less important than its page count size. BSIB is 

nearly twice as slow as PSIB and PSIB, but even BSIB is only 2.4 milliseconds per page.  

None of the secure indexes are unreasonably slow; even a document consisting of ~300 pages takes 

only a fraction of a second to build. Indeed, the PSIB can build a ~800 page document in only a 

second. And, as discussed later, there are significant performance improvements that could be 

easily realized, e.g., replacing unnecessary cryptographic SHA256 re-hashes with non-cryptographic 

hash functions. 
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Figure 48 Pages per Document vs Build Time 

 

Figure 49 A Closer Look at Pages per Document vs Build Time 

Documents (per corpus) vs Build Time 

EXPERIMENT DETAILS 

INPUT documents (per corpus) 
OUTPUT corpus build time (milliseconds) 
CONSTANTS 1 secret 

16 pages (per document) 
250 location uncertainty 
0.001 false positive rate 

TESTBED machine A 
Figure 50 Experiment #15 
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The time to build a corpus consisting of reasonably large 16 page documents is 24 milliseconds per 

document for PSIB, 27 milliseconds for PSIP, and 36 milliseconds for BSIB. 

In the previous experiment, we plotted page size vs build time. The line of best fit for 

PSIB build time ≈  1.24 ∙  pages +  4.1; for PSIP, the line of best fit was build time ≈ 1.36 ∙ pages + 

5.5; finally, for BSIB, the line of best fit was build time ≈  2.4 ∙  pages −  2.4. Each one of these 

lines of best fit competently predicts the slopes in Figure 51. 

 

Figure 51 Documents per Corpus  vs Total Build Time per Corpus 

Pages vs Load Time 

EXPERIMENT DETAILS 

INPUT pages (~250 words/page) 
OUTPUT load time (milliseconds) 
CONSTANTS 1 secret, 256 location uncertainty 

0.001 false positive rate 
1000 documents (documents/corpus) 

TESTBED machine A 
Figure 52 Experiment #16 

In this experiment, we are interested in seeing how page count affects secure index load time. 

Interestingly, PSIB (and PSIF) is nearly constant when representing documents from 1 page to 300 

pages; 300 page documents take only 2.86 milliseconds to load raw from disk. 
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The other two perform less impressively. With respect to PSIP, we did not make much of an effort to 

optimize it. For instance, we load a term’s postings list as a vector of varints40, which incurs 

significant vector construction overhead as the number of terms in the document increases. More 

efficient representations of posting lists—in terms of both construction overhead and compression 

ration—are discussed on page 26. With respect to BSIB, as the document size increases, the 

overhead of de-serializing a larger number of Bloom filters may take a toll. However, the 

serialization seems otherwise efficient. 

 

Figure 53 Pages per Secure Index vs Secure Index Load Time 

Documents vs Load Time 

EXPERIMENT DETAILS 

INPUT documents (per corpus) 
OUTPUT corpus load time (milliseconds) 
CONSTANTS 1 secret, 250 location uncertainty 

16 pages (per document) 
0.001 false positive rate 

TESTBED machine A 
Figure 54 Experiment #17 

                                                           
40 A way of storing small integers in fewer bytes. This is a slight cheat, since in general we attempted to ensure 
sizeof (secure index data structure in memory)  is approximately the same as size(secure index 
serialization on disk), but a varint on disk is converted into an unsigned integer once loaded into memory. 
Arguably, the cheat is justified since it is designed to mimic a more efficient representation. 
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As shown in Figure 55, the time to load a corpus consisting of medium-sized 16 page documents is 

0.26 milliseconds per document for PSIB, 2.13 milliseconds for PSIP, and 1.55 milliseconds for BSIB. 

In the previous experiment, we plotted page size vs load time. The line of best fit for 

PSIB load time ≈ 2𝐸 − 05 ∙ pages2  +  0.002 ∙  pages +  0.22. Plugging in 𝑝𝑎𝑔𝑒𝑠 =  16, we get a 

prediction of 0.26 milliseconds, which accurately matches the actual slope in Figure 55. The same is 

approximately the same for the other two secure indexes as well. 

 

Figure 55 Documents per Corpus vs Corpus Load Time 

Pages vs MinDist* Lag Time 

EXPERIMENT DETAILS 

INPUT pages (~250 words/page) 
OUTPUT MinDist* lag time (milliseconds) 
CONSTANTS 1 secret, 0 obfuscations, 256 location uncertainty 

0.001 false positive rate 
2 terms/query, 1 or 2 words/term 

TESTBED machine A 
Figure 56 Experiment #18 

In this experiment, we are interested in seeing how page count affects MinDist* lag time. BSIB is 

unique among the secure indexes in that MinDist* lag time is linearly dependent upon page count; 

every additional page incurs ~0.0004 milliseconds, as shown in Figure 57. 

For large documents (more specifically, for documents with a large number of block segments), BSIB 

performs poorly on this measure. This is the expected outcome. For a fixed location uncertainty, as 
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the page count increases the document must be segmented into more blocks and therefore, 

because every block is assigned a Bloom filter, more Bloom filters must be queried (i.e., more hash 

functions must be evaluated). Since each Bloom filter hash function evaluation requires a constant 

amount of time, all query lag times—MinDist* included—are dependent upon the number of hash 

functions that must be evaluated per document. 

For a ~300 page document, the lag time is nearly 0.14 milliseconds. If the corpus consists of a 

million such documents, this operation would require nearly 140 seconds to complete. This is 

certainly impractical. 

The PSI-based secure indexes, to a first approximation, take only a small constant amount of time 

with respect to page count. However, the constant—while small—will have scalability issue as 

corpus size grows to many thousands of documents. For instance, a corpus consisting of a million 

documents would require nearly ~20 seconds to complete. Even PSIP, the fastest secure index on 

this benchmark, would require ~7 seconds to complete. 

None of them is below the one-second mark for the million-document example; one-second 

response times are often considered the maximum delay a typical user will tolerate, and the 

network latency time is not even being factored into this measure. Of course, secure indexes do not 

represent the typical use case—the services provided by secure indexes are not without cost—

simply evaluating cryptographic hashes is computationally demanding, and we perform at least one 

of those per query term per document. Moreover, the slowed response times are far better than 

the alternative of downloading the entire corpus, decrypting the documents, and then conducting 

local searches on them. 

There are a couple of immediately obvious ways to improve the computational efficiency of query 

operations like MinDist*. First, each secure index in the database re-hashes the hidden query’s 

unigram and bigram terms with SHA256. While the re-hashing operation is desirable to ensure that 

a cryptographic hash of a term in one secure index looks nothing like the cryptographic hash of the 

same term in any other secure index, using SHA256 to perform the re-hashing is overkill; after all, 

the hidden query itself has already been transformed using SHA256. 

According to our benchmarks, each evaluation of SHA256 takes ~0.0024 milliseconds on machine A. 

This is significant; a single SHA256 hash consumes one-third the total time taken, on average, to 

complete a PSIP MinDist* query (per secure index) consisting of two terms per query and one or two 

words per term. In fact, ~0.0024 milliseconds are required for each trapdoor in the query. While 

the secure indexes short-circuit processing queries where appropriate (in this experiment consisting 

of two terms per query, they can at most avoid processing one term per query per document), it is 

clear that significant savings could be realized by using an orders-of-magnitude faster non-

cryptographic hash function without any loss in confidentiality. 

Another way to speed up query processing is through parallel programming techniques. Each query 

can be independently queried so this is an embarrassingly parallel problem and performance scales 

linearly with core count. Given N cores, PSIP MinDist* query lag time would be ~0.0078/𝑁 

milliseconds. It could complete the MinDist* query operation against a million documents in less 

than a second given 𝑁 = 8 cores. 

BSIB would require around 𝑁 = 140 cores to get under the one-second mark on a million 

documents consisting of ~300 pages per document. Using Bloom filters in the ways that have been 
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previously proposed does not seem to be practical at scale. When we include some optimizations, 

like replacing the slow cryptographic SHA256 re-hash with a fast hash and incorporate memorization 

or caching, it may still work at scale in practice. 

 

Figure 57 Pages per Secure Index vs MinDist* Lag Time 

Location Uncertainty vs Location Error 

EXPERIMENT DETAILS 

INPUT location uncertainty 
OUTPUT average absolute location error 
TESTBED machine A 

Figure 58 Experiment #19 

MinDist* (see page 31) relies on a secure index’s approximate location information to calculate 

minimum pairwise distances for query terms in the given document (or, in the case of PSIM, the 

approximate minimum pairwise distance information is directly encoded into it). The less uncertain 

the location is, all things else being equal, the more accurate MinDist* output will be (when 

compared to rank-ordered output of the canonical index with perfect information). 

However, if the location information is too precise, a hypothetical adversary will have more success 

at inferring the contents of the document. Thus, the word positions must be uncertain—e.g., only 

reporting that a word falls within some range (block), as PSIB and BSIB do, scrambling the positions 

in some random way, as PSIP does, or directly encoding the minimum pairwise distances, as PSIM 

does. 
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In this experiment, we are interested in observing the expected location error for block-based 

secure indexes (PSIB and BSIB) and scrambled postings (PSIP)41—𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑_𝑢𝑛𝑖𝑓𝑜𝑟𝑚 and 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑_𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟. Figure 59 clearly shows that the block-based secure indexes result in the 

greatest loss of accuracy. This was expected since terms are assigned uncertainty ranges—block 

ranges—that are not centered on their true positions. The other two (either of which may be used 

by PSI0P), 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑_𝑢𝑛𝑖𝑓𝑜𝑟𝑚 and 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑_𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟, are named after the PDFs they sample 

their position offsets from: 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑_𝑢𝑛𝑖𝑓𝑜𝑟𝑚 uniformly samples an integral offset from [−𝑟, 𝑟], 

where 2𝑟 is equal to the location uncertainty, and 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑_𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 samples from the 

triangular distribution with a mean and mode equal to the true position and a base also of length 

2𝑟. The triangular distribution has the least variance of the three, so naturally it has the least 

amount of error of the tree.42 

These results are significant in light of our analysis on page 37, which suggests that block-based 

approaches as represented by PSIB and BSIB are significantly easier for a hypothetical adversary to 

compromise compared to centered approaches as represented by PSIP. 

 

Figure 59 Location Uncertainty vs Absolute Location Error 

  

                                                           
41 Note that PSIM is not simulated in this experiment since it can preserve perfect minimum pairwise distance 
information without the corresponding loss of confidentiality. 
42 PSIP may use any appropriate PDF, e.g., it could use a normal distribution with more or less variance to 
trade accuracy for leakage. 
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Location Uncertainty vs MinDist* MAP 

EXPERIMENT DETAILS 

INPUT location uncertainty 
OUTPUT MinDist* MAP 
CONSTANTS 1 secret, 0 obfuscations 

1000 documents (per corpus) 
0.001 false positive rate 
3 terms/query, 1 or 2 words/term 

TESTBED machine A 
Figure 60 Experiment #20 

As shown in Figure 61 and Figure 62, as location uncertainty converges to 0, all of the secure indexes 

converge to the same MinDist* MAP, which is approximately a score of 0.95. However, as location 

uncertainty increases, PSIP quickly diverges from the other two. 

Moreover, PSIB and BSIB do not scale well to large numbers of blocks (recall that location 

uncertainty is inversely proportional to the number of blocks in PSIB and BSIB). If the chosen 

parameters for MinDist* flatten out its curve, i.e., it is made to be less sensitive to small changes in 

location uncertainty (or the documents are reasonably small), PSIB and BSIB are competitive choices 

for MinDist*. Otherwise they are not well suited to it compared to PSIP. However, note that they 

may effectively enable other search criteria like Boolean proximity search. 

 

 

Figure 61 Location Uncertainty vs MinDist* Mean Average Precision 
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Figure 62 A Closer Look at Location Uncertainty vs MinDist* MAP 

Pages vs BM25 Lag Time 

EXPERIMENT DETAILS 

INPUT pages (~250 words/page) 
OUTPUT BM25 lag time (milliseconds) 
CONSTANTS 1 secret, 0 obfuscations, 256 location uncertainty 

0.001 false positive rate 
2 terms/query, 1 or 2 words/term 

TESTBED machine A 
Figure 63 Experiment #21 

In this experiment, we are interested in seeing how page count affects BM25 query lag time. Pages 

vs BM25 lag time shows a similar pattern to pages vs MinDist* lag time. However, note that BM25 is 

slower. The reason for this is related to a technicality in the implementation of the BM25 algorithm. 

Specifically, the implementation queries secure indexes twice for each query term; once for 

calculating the number of documents which contain a given query term, and once for calculating the 

frequency of the given query term per document. 

The implementation of the BM25 algorithm can be streamlined to only require a single query per 

document. Moreover, many of these computations can be memoized. In practice, this can be 

expected to save a significant amount of work. 

As shown by Figure 64 and Figure 65, BM25 lag time for PSIB and PSIP are, to a first approximation, 

independent of page count. 
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Figure 64 Pages per Secure Index vs BM25 Lag Time 

 

Figure 65 A Closer Look at Pages per Secure Index vs BM25 Lag Time 
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Location Uncertainty vs BM25 MAP 

EXPERIMENT DETAILS 

INPUT location uncertainty 
OUTPUT BM25 MAP 
CONSTANTS 1 secret, 0 obfuscations, 0.001 false positive rate 

3 terms/query (Figure 67), 2 terms/query (Figure 68) 
1 or 2 words/term 
16 pages (per document), 1000 documents (per corpus) 

TESTBED machine A 
Figure 66 Experiment #22 

In this experiment, we are interested in seeing how location uncertainty effects BM25 MAP. In 

Figure 67 and Figure 68, PSIP and PSIF track each other perfectly, as do PSIB and BSIB. PSIP and PSIF 

preserve, if desired, perfect frequency information for unigrams and bigrams (although false 

positives on negative examples are still possible), and this is independent of location uncertainty in 

PSIP (and PSIF does not store location information). 

PSIB and BSIB approximate a term’s frequency by counting how many of the blocks it appears in. 

The more blocks (the lesser the location uncertainty), the more accurately it approximates the true 

frequency. Indeed, in Figure 67, we see that as location uncertainty converges to 2, all of the secure 

indexes converge to the same BM25 score. 

In addition, notice that compared to Figure 67, Figure 68 is less accurate for a given location 

uncertainty for all of the secure index types. The reason for this has to do with the fact that Figure 

67 has more terms per query. It seems to be the case that the more terms per query the less 

sensitive BM25 is to frequency approximation errors. 

 

Figure 67 Location Uncertainty vs BM25 MAP with 2 Words/Term, 3 Terms/Query 

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2 202 402 602 802 1002 1202 1402 1602 1802

B
M

2
5

 M
ap

Location Uncertainty

Location Uncertainty vs BM25 Map

bsib psib psip



76 
 

 

Figure 68 Location Uncertainty vs BM25 MAP with 2 Words/Term, 2 Terms/Query 

Pages vs Boolean Lag Time 

EXPERIMENT DETAILS 

INPUT pages (~250 words/page) 
OUTPUT Boolean query lag time (milliseconds) 
CONSTANTS 1 secret, 0 obfuscations 

256 location uncertainty 
0.001 false positive rate 
2 terms/query, 1 or 2 words/term 

TESTBED machine A 
Figure 69 Experiment #23 

As with every other output related to lag time, BSIB performs comparatively poorly—as expected. 

Note that Boolean queries do not rank documents; a document is either relevant to the query (in 

this case, for a document to be relevant it must contain all of the terms in the query—a Boolean 

AND operation) or it is non-relevant. This is the quickest kind of query. 

Indeed, the time required to perform the excessive SHA256 re-hashing operation takes up the most 

significant portion of time. PSIB, PSIP, and PSIF (PSIF is not shown but it tracks PSIP) can complete 

this operation in approximately 0.003 milliseconds, at least 0.0024 milliseconds of which is 

consumed by computing unnecessary SHA256 re-hashes. In other words, this is a ~500 nanosecond 

operation. This should allow a corpus of two million secure indexes to be searched by queries of this 

form in a second (not including the round-trip network delay). 

With some of the other proposed performance enhancers, like caching and parallel computing, the 

simple Boolean query operation is extremely scalable. For documents of a typical length, e.g., less 

than 50 pages, even BSIB performs acceptably. 
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Figure 70 Pages per Secure Index vs Boolean Search Lag Time 

 

Figure 71 A Closer Look at Pages per Secure Index vs Boolean Search Lag Time 
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Secure Index Poisoning: Junk Terms vs Compression Ratio, BM25 MAP 

EXPERIMENT DETAILS 

INPUT Junk term percentage (proportion of fake terms in secure index) 
OUTPUT BM25 MAP, compression ratio 
CONSTANTS 16 pages, 1000 documents (per corpus) 

1 secret, 0 obfuscations 
256 location uncertainty 
0.001 false positive rate 
2 terms/query (only relevant for BM25 MAP) 
1 or 2 words/term (only relevant for BM25 MAP) 

TESTBED machine A 
Figure 72 Experiment #24 

As expected, BM25 is, to a first approximation, independent of junk term percentage (see page 40). 

Also as expected, the compression ratio does depend on junk term percentage. PSIB, PSIP, and PSIF 

grow non-linearly as the junk percentage increases, but at worst (when there are 50% junk terms) 

they are only approximately double the original size. We also see that PSIB and BSIB eventually cross 

over at around the 40% mark. Before 40%, PSIB has the advantage. 

According to these results, we may choose to significantly poison the secure indexes by adding fake 

terms to mitigate the attacks (see page 37) with very little loss in accuracy and a moderate cost to 

size. 

 

Figure 73 Percentage of Junk Terms vs Secure Index Compression Ratio 
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Figure 74 Percentage of Junk Terms vs BM25 MAP 

Secure Index Poisoning: Frequency Percent Error vs Compression Ratio 

EXPERIMENT DETAILS 

INPUT Relative frequency percent error and junk percentage (same value) 
OUTPUT BM25 MAP 
CONSTANTS 16 pages, 1000 documents (per corpus) 

1 secret, 0 obfuscations 
256 location uncertainty 
0.001 false positive rate 
1 or 2 words/term 

TESTBED machine A 
Figure 75 Experiment #25 

The frequency error for PSIB and BSIB is implicitly dependent on location uncertainty and cannot be 

controlled explicitly. Thus, we do not include their outputs in this experiment. 

In this experiment, we decided to change both the relative frequency error and the junk term 

percentage simultaneously for PSIP and PSIF. For PSIF, approximate frequency ≈ true frequency ±

𝑈𝑁𝐼𝐹(0,relative frequecy error) ×  true frequency, but for PSIP approximate frequency ≈

true frequency + 𝑈𝑁𝐼𝐹(0,relative frequency error) ×  true frequency. This explains why PSIP 

performs consistently better than PSIF, as it has a smaller relative error range. This was done due to 

time constraints; ideally, PSIP would have the same relative frequency error formula as PSIF, and it is 

expected once that was implemented in PSIP it would have the same response as PSIF on this 

experiment. 

As shown in Figure 76, they both perform admirably. Even with a relative frequency error and junk 

percentage of 50%, they both do better than 90% when using 2 terms/query. When we decrease the 

terms per query to 1, they perform expectedly worse—indeed, at 50% error, PSIF reaches nearly 
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80% mean average precision. We may choose to significantly poison these secure indexes to 

mitigate the adversary’s attack with only a modest loss in accuracy. 

 

Figure 76 Relative Frequency Error vs BM25 MAP with 2 Terms/Query 

 

Figure 77 Relative Frequency Error vs BM25 MAP with 1 Term/Query 
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Compression Ratio (Secure Index Size to Document Size) vs MinDist* MAP 

EXPERIMENT DETAILS 

INPUT compression ratio (ratio of secure index size to document size) 
OUTPUT MinDist* MAP 
CONSTANTS 1 secret, 0 obfuscations 

0.001 false positive rate 
3 terms/query, 1 or 2 words/term 
1000 documents (per corpus) 

TESTBED machine A 
Figure 78 Experiment #26 

In this experiment, we are interested in seeing how the ratio of the secure index size to the original 

document size affects MinDist* MAP accuracy. 

PSIP has the highest unconditional MinDist* MAP score. However, PSIB and BSIB have much better 

compression ratios. In fact, PSIP has a nearly constant ratio (across a range of document sizes)—the 

only way to change its size is by changing the false positive rate or by poisoning it. Depending on 

how the poisoning is done, it can be made smaller (e.g., replacing multiple positions with a single 

mean position in a postings list) or larger (adding positions in a postings list or adding fake terms). 

This is both a positive and a negative, as PSIP is nearly (in these examples) always the same fraction 

of the original document’s size but is consistently the highest performer on MAP accuracy and lag 

time. 

 

Figure 79 Compression Ratio vs MinDist* MAP 
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Words/Term vs Precision and Recall 

EXPERIMENT DETAILS 

INPUT words/term 
OUTPUT precision and recall 
CONSTANTS 1 secret, 0 obfuscations 

0.001 false positive rate 
1 term/query 
16 pages, 500 documents (per corpus) 

TESTBED machine A 
Figure 80 Experiment #27 

For a term to be a false positive, one of the following conditions must be true (see page 23): 

(1) If the query term is a keyword, then its unigram is not in the document but due to the false 

positive rate of the secure index it is a positive hit. 

(2) If the query term is a phrase, and all of its bigrams are present in the document, then they 

are in the wrong order. This is a false positive caused by the biword model. 

(3) If the query term is a phrase, and not all of its bigrams are present in the document, then all 

of these non-present bigrams must be false positives. 

Theoretically, a false negative can only occur if: 

(4) The query term is an n-gram, 𝑛 >  2, and the secure index is a PSIB or a BSIB. If this is the 

case, a phrase may exist in the original document, but due to the way PSIB and BSIB filter 

out false positives, they may also filter out true positives on occasion since we only count a 

phrase as a hit if all of its bigrams are in a single block. 

In this test, we are interested in observing how precision and recall behave in practice in light of the 

above points. Each query consists of one term, from one to six words per term. As can be seen in 

Figure 81, as expected recall decreases the as the words/term increases for PSIB and BSIB. 

Additionally, precision increases when words/term increases. Point (3), above, explains why. It is less 

probable to get 𝑘 false positives than 𝑘 − 1 false positives. Mathematically: 

𝑃[false positive|n-gram ] ~ 𝜀𝑘 , 𝑘 < 𝑛 

where 𝜀 is the false positive rate on bigrams (and unigrams) and 𝑘 is the number of bigrams in the n-

gram which are non-existent in the 𝑛-gram phrase with a maximum of 𝑛 − 1 bigrams. 

However, unexpectedly we do see some false negatives when the term consists of only one or two 

words—a single unigram or a single bigram. Theoretically, this should not happen. It is extremely 

minor, i.e., recall for this situation is over 99.95% accurate but we were expecting 100%. This 

warrants further investigation. 
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Figure 81 Words per Term vs Precision and Recall 
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CHAPTER V 

EXTENSIONS 

SET-THEORETIC QUERIES 
Set-theoretic queries are a simple extension of Boolean queries. Let the results (list of references) 

returned from Boolean search be sets, then the intersection (AND), union (OR), and complement 

(NOT) of them may be taken, e.g., result set for 𝑞1 AND result set for 𝑞2. 

All that a secure index needs to do in order to support set-theoretic query operators is to implement 

the contains(ht: HiddenTerm): Boolean interface. Thus, for each atomic query in a compound 

query, it will use this interface to retrieve the query’s result set and then apply set-theoretic 

operations on the result sets to implement AND, OR, and NOT. 

For instance, to implement NOT(𝑞), find all documents in the corpus that are relevant to the atomic 

query 𝑞 and then take the complement of this result set, i.e., only include a document (from the 

corpus) in the complement set if it is not in the result set. 

Furthermore, all other set-theoretic operators, like set difference, can be expressed in terms of 

AND, OR, and NOT43, e.g., difference(𝐴, 𝐵)  =  𝐴 AND NOT(𝐵). Note that to support arbitrary set-

theoretic operations, the language should be defined by a recursive grammar. This will allow for 

applying operators to nested results. For a company like Google, this is not necessarily a practical 

option since they must support millions of queries per second on billions of documents, but it may 

be a practical option for an Encrypted Search cloud server. 

Set-theoretic query grammar. An example of a recursive grammar, expressed in BNF notation, for set-

theoretic queries is: 

<query> 
 
 

<atomic_query> 
<term> 

<binary_op> 
<exact_phrase> 
<keywords> 
<keyword> 

<alphanumeric> 

∷= 
∷= 
∷= 
∷= 
∷= 
∷= 
∷= 
∷= 
∷= 
∷= 

<atomic_query> | (<query>) | 
NOT <query> | 
<query> <binary_op> <query> 
<term> | <term> <atomic_query> 
<exact_phrase> | <keyword> 
AND | OR | … 
"<keywords>" 
<keyword> | <keyword> <keywords> 
<alphanumeric><keyword> | <alphanumeric> 
a|b|…|z|0|1|…|9 

Table 7 BNF Set-Theoretic Query Grammar 

FUZZY SET-THEORETIC SEARCH 
Fuzzy set-theoretic queries are an extension of classical (crisp) set-theoretic queries. Instead of 

operating on Boolean values, they operate on degree of membership values; a degree of 

membership value represents the degree (in the range [0, 1]) to which something is a member of a 

                                                           
43 Technically, only AND and NOT (or OR and NOT) are needed, but for computational efficiency both AND and 
OR should be efficiently supported such that they may be short-circuited as early as possible. Indeed, this may 
justify implementing additional operators without reducing them to combinations of AND, OR, and NOT. 
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set. At one extreme, a value equal to 1 is equivalent to true—e.g., a document is completely 

relevant to a query. At the other extreme, a value equal to 0 is equivalent to false—e.g., a document 

is completely irrelevant to a query. 

Fuzzy operator equivalents to NOT, OR, and AND are: 

NOT(𝑞)  =  1 −  𝑞 

AND(𝑞1, 𝑞2) =  MIN(𝑞1, 𝑞2) 

OR(𝑞1, 𝑞2)  =  MAX(𝑞1, 𝑞2) 

Fuzzy set-theoretic queries may use the normalized output of any scoring algorithm or heuristic that 

does not simply output a binary score44. The non-binary output from BM25 and MinDist* are 

obvious candidates for this. However, before they may be used, their output must be normalized 

such that the maximum value is 1 and the minimum value is 0. 

For instance, unnormalized MinDist* is 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒(𝑄) = ln (𝛼 + 𝛾 ∙ exp {−
𝛽𝑠

|𝑄′|𝜃
}). The 

minimum value for 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒 is lim
𝑠→∞

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒(𝑄) = ln(𝛼) and the maximum value is 

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒(𝑄; 𝑠 = 0) = ln(𝛼 + 𝛾). Thus, normalized MinDistScore is 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑁𝑜𝑟𝑚(𝑑, 𝑄) =
𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒(𝑑,𝑄)−ln(𝛼)

ln(𝛼+𝛾)−ln(𝛼)
=

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒(𝑑,𝑄)−ln(𝛼)

ln(
𝛼+𝛾

𝛼
)

. 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑁𝑜𝑟𝑚 may be used in fuzzy set theoretic 

queries. For example: 

fuzzy degree of membership for doc 𝑑

= (𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑁𝑜𝑟𝑚(𝑑, 𝑄1) 𝑂𝑅 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑁𝑜𝑟𝑚) AND NOT(MinDistNorm(𝑑, 𝑄2)), 

where 𝑄1, 𝑄2, and 𝑄3 can be any query. 

A similar normalization can be done for 𝐵𝑀25𝑆𝑐𝑜𝑟𝑒. Moreover, it may be reasonable to allow the 

metrics to be specifically requested by the user, e.g., let 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑁𝑜𝑟𝑚(𝑑, 𝑄) ≡ 𝑐𝑙𝑜𝑠𝑒(𝑑, 𝑄), 

𝐵𝑀25𝑁𝑜𝑟𝑚(𝑑, 𝑄) ≡ 𝑡𝑒𝑟𝑚_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑑, 𝑄), and the linear combination 𝛼1 ∙

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒(𝑑, 𝑄) + 𝛼2 ∙ 𝐵𝑀25𝑆𝑐𝑜𝑟𝑒(𝑑, 𝑄) ≡ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑑, 𝑄). Thus, for example: 

fuzzy degree of membership for doc d

= (close(𝑑, 𝑄1) OR NOT(importance(𝑑, 𝑄2)))  OR term_importance(𝑑, 𝑄3) 

Typically, some defuzzification procedure is used to produce some actual result from the degree of 

membership values (like a steering direction in a fuzzy control system). In the context of information 

retrieval, one option is to define an operator, 𝑡𝑟𝑢𝑒(𝑞) = 𝑞 > 𝐾, where 𝑞 represents the degree to 

which the confidential document is relevant to the fuzzy query. Thus, if 𝑞 > 𝐾, the corresponding 

document is considered to be relevant and will be returned in the result set. However, 

defuzzification seems unnecessary and even undesirable; rather, 𝑞 can serve as the document’s 

score for rank-ordering. No defuzzification is warranted. 

We can also apply hedges to degree of membership values. Hedges modify the degree of 

membership value in a way that conforms to common intuition, e.g., a proposition can be somewhat 

                                                           
44 Fuzzy set-theoretic queries reduce to classical set-theoretic queries if the scoring algorithm only outputs 
binary scores. 
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true but may not be very true. Indeed, somewhat and very are two examples of hedge functions. Let 

very(𝑞)  =  𝑞2 and somewhat(𝑞) = 𝑞
1

2. 

On the one hand, observe that very(𝑞) is lower than 𝑞 if 𝑞 ∈ (0,1) and very(𝑞) = 𝑞 if 𝑞 = 0 or 𝑞 =

1. Also, note that 
𝑑

𝑑𝑞
very(𝑞) ∝ 𝑞, and thus the marginal value of very(𝑞) increases as 𝑞 goes from 0 

to 1, i.e., as q approaches 1, very(𝑞) increases at a faster and faster rate and converges to 

identity(𝑞) at 𝑞 = 1. On the other hand, observe that somewhat(𝑞) is higher than 𝑞 if 𝑞 ∈ (0,1) 

and somewhat(𝑞) = 𝑞 if 𝑞 = 0 or 𝑞 = 1. Also, note that 
𝑑

𝑑𝑞
somewhat(𝑞) ∝ 𝑞−

1

2, and thus the 

marginal value of somewhat(𝑞) decreases as 𝑞 goes from 0 to 1, i.e., as q approaches 1, 

somewhat(𝑞) increases at a slower and slower rate and converges to identity(𝑞) at 𝑞 = 1. In other 

words, you quickly reach a state of diminishing returns, e.g., a “medium” 𝑞 is not much less true 

than a “large” 𝑞. 

An example of a fuzzy query using these two hedges is: 

fuzzy degree of membership for doc 𝑑

= very (close(𝑑, 𝑄1) OR somewhat(close(𝑑, 𝑄2)))  AND importance(𝑑, 𝑄3) 

Note that fuzzy set-theoretic queries may also be used as a query language to enable query 

expansion, like expanding a term to include synonymous terms. 

Fuzzy set-theoretic query grammar. The set theoretic grammar described in Table 7 for set theoretic 

grammars can be extended to support fuzzy set-theoretic constructs. 

<query> 
 
 
 

<atomic_query> 
<term> 

<unary_op> 
<search_type> 

<hedge> 
<binary_op> 

<exact_phrase> 
<keywords> 
<keyword> 

<alphanumeric> 

∷= 
∷= 
∷= 
∷= 
∷= 
∷= 
::= 
::= 
∷= 
∷= 
∷= 
∷= 
∷= 
∷= 

<atomic_query> | 
<unary_op> <query> 
(<query>) 
<query> <binary_op> <query> 
<term> | <term> <atomic_query> 
<exact_phrase> | <keyword> 
NOT | <hedge> | <search_type> 
close | importance | term_importance | … 
somewhat | very | … 
AND | OR |… 
"<keywords>" 
<keyword> | <keyword> <keywords> 
<alphanumeric><keyword> | <alphanumeric> 
a|b|…|z|0|1|…|9 

Table 8 BNF Fuzzy Set-Theoretic Grammar 

BOOLEAN PROXIMITY SEARCHING 
In our experiments, we use MinDist* as a way to rank-order documents according to distance metric 

that takes as input a sum of minimum pairwise distances. However, another perhaps more useful—

and far more straightforward—way to use the proximity information in secure indexes is to require 

that all of the terms in a query be within a minimum proximity of each other. 

An algorithm to enable this functionality has already been essentially implemented for the MinDist* 

scoring function. It is less complicated (both conceptually and computationally) than the MinDist*. 
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Furthermore, MinDist* or BM25 can be used in tandem with Boolean proximity requirements, e.g., 

rank-order only those documents which contain all the terms in the query within a minimum 

proximity of each other. 

CACHING RESULTS 
Caching previously calculated results could result in significant savings. For example, whenever a 

term in a Boolean search is mapped to a set of documents, store the mapping in a cache so that 

subsequent Boolean searches involving the term may be serviced in near constant time. 

We had initially included an LRU cache to memoize computations like the above, but we decided not 

to use them for the experiments for more predictable query lag times. In a practical 

implementation, a cache would be used to avoid doing unnecessary work. Since queries tend to be 

heavily biased towards a small subset of terms, this could result in significant savings.  

Note that the CSP may technically do this without user permission. While it is a concern that a CSP 

may secretly collect such statistics, there may be little that can be done about it (with the exception 

of Oblivious RAM-like techniques). 
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CHAPTER VI 

FUTURE WORK 

SIMULATING AN ADVERSARY WITH SECURE INDEX ACCESS 
On page 37 we provided a theoretical treatment on a hypothetical adversary who exploits the 

approximate and uncertain information in secure indexes to compromise their contents, e.g., 

reconstructing some fraction of their contents. We also included several experiments to analyze the 

effect of strategies intended to mitigate the risks posed by the adversary, e.g. secure index 

poisoning. However, due to time constraints, we did not implement a simulation of this adversary as 

we did for the query privacy adversary. 

MITIGATING ACCESS PATTERN LEAKS 
As described on page 7, information leaks can take many other forms. To mitigate such information 

leaks, in general we can look to Oblivious RAM [18] for inspiration. Oblivious RAM may naively be 

thought of in the following way: to prevent meaningful statistics from being gathered about a user’s 

activities, whenever an action—a read or write—is performed, include other randomly chosen 

actions (e.g., fake queries) to obscure the user’s actual interests or activities. 

Multiple secure indexes per document. For each document, construct multiple secure indexes in 

which each one will look different because they will each use a different document reference45 and, 

more importantly, they will each use different salts for their searchable terms (trapdoors). 

Consider the following. Let a document 𝐴 read “𝐻𝑒𝑙𝑙𝑜 𝑤𝑜𝑟𝑙𝑑! ”. Let us represent the confidential 

document A with 𝑁 = 3 salts, resulting in three different secure indexes 𝐴1, 𝐴2, and 𝐴3. Then, let 

𝐴𝑖’s trapdoors be {“ℎ𝑒𝑙𝑙𝑜|𝑠𝑎𝑙𝑡𝑖”, “𝑤𝑜𝑟𝑙𝑑|𝑠𝑎𝑙𝑡𝑖”, “ℎ𝑒𝑙𝑙𝑜|𝑤𝑜𝑟𝑙𝑑|𝑠𝑎𝑙𝑡𝑖”}. Thus, each time you perform 

a search, sample from the set of salts so that different variations of the secure indexes may be 

targeted. 

Not only will this support query privacy (in the same way having multiple secrets do), but it will also 

cause the same query to return a set of logically equivalent results (with slight variations due to false 

positives) in 𝑁 = 3 different ways. This increases the size of the secure index database by a factor of 

𝑁 and increases lag time by up to a maximum factor of 𝑁.  

                                                           
45 Simply encrypt (using an invertible encryption scheme) the document reference with different salts. 
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Fake secure indexes. An extension of multiple secure indexes per confidential document is the 

automatic inclusion of fake secure indexes. These may be automatically generated from some given 

language model (e.g., trigram language model). The intent behind including fake secure indexes is to 

make it more difficult for an adversary to determine which documents retrieved in response to a 

query are of actual interest. The user who submitted the search will be able to instantly filter out the 

fake results, e.g., fake secure indexes will have some identifier in their reference string that is only 

discernable after decryption. 

Fake queries. Instead of transmitting a single query for each actual query a user is interested in, a 

fake query rate parameter causes an appropriate number of additional fake queries to be 

generated46. Fake queries are strictly intended to obfuscate the user’s actual queries of interest, just 

as query obfuscation is intended to obfuscate the actual terms of interest in a single query. 

Fake queries may consist of terms chosen from a distribution that is likely to result in a plausible 

distribution of hits (i.e., relevant to an appropriately large set of documents), e.g., sample the terms 

in fake queries from a Zipf distribution. In this way, it may be impossible for an adversary to 

separate fake queries from real queries. Of course, this comes at the cost of increased resource 

consumption, e.g., the server must process more queries per legitimate query, thus increasing 

processing and network transmission requirements. 

SEMANTIC SEARCH 
On page 14, semantic searching was discussed. In the context of Encrypted Search, this can be 

implemented using standard natural language processing techniques, but it must generally be done 

in a pre-computed way due to the way trapdoors are constructed, i.e., some form of exact string 

matching must be performed on cryptographic hash values. 

Consider the following. If a user’s information need is represented by the query "carnivore hunting 

prey," one may assume she is also interested synonymous concepts or even more specific concepts, 

like "dog chasing cats" and "lions hunting antelopes". Using part of speech tagging, it can be 

determined that "carnivore" is the subject, "hunting" is the verb, and "prey" is the object. Using 

word-sense disambiguation, the word senses can be accurately determined, e.g., "carnivore" maps 

to "carnivore-1" (word sense 1 of carnivore in a dictionary). Using an ontology (like WorldNet), it can 

be determined that "carnivore-1" is a concept which includes more specific concepts like "dog-1" 

and "lion-2". Following this, we can expand47 the query “carnivore hunting prey” into a set of 

queries that better represents the information need: 

{“carnivore-1 hunting-3 prey-4”, “dog-1 chasing-1 cat-1”, “dog-1 chasing-1 feline-2”, “lion-2 hunting-

3 antelope-1”, …} Subsequently, this query set must be converted into a (potentially prioritized) list 

of hidden queries, in which each hidden query consists of a list of cryptographic trapdoors. 

In addition, during the preprocessing stage of secure index construction, similar techniques may be 

used to insert pre-computed cryptographic hashes such that exact string matches will occur for 

                                                           
46 This may take the form of the user’s client sending 𝑁 fake queries per real query, where 𝑁 is a 

discrete random variable, or it may consist of something else entirely, like a fake query bot providing 

a plausible flow of fake queries independently of real queries. 

47 A form of query expansion. 
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documents relevant to a given hidden query. For example, instead of just storing a biword model of 

a sentence that reads, “dog chasing cat,” store a word-sense disambiguated biword model of “dog-1 

chasing-1 cat-1”. Furthermore, again using the same or similar techniques to semantic query 

expansion described previously, also insert synonymous or more general concepts, e.g., a biword 

model of "carnivore hunting prey”. 

It is interesting to note that most of the work can be done in either the query expansion engine, or 

in the secure index representation. That is, we can generate an on-the-fly set of queries from a 

single query through query expansion techniques and leave the secure index alone, or we can front-

load most of the work in the secure index and leave the queries alone.  

There are well-known trade-offs to either approach, but in the context of Encrypted Search, there 

are additional considerations. Namely, if using query expansion, each query may expand to multiple 

hidden queries, all being related in some way. This information can be exploited by the adversary 

(see page 34), e.g., a more sophisticated probability model may use this information to mount more 

effective maximum likelihood attacks. In any future work, we could implement standard semantic 

search techniques, and explore these trade-offs with the aim of not only quantifying and mitigating 

information leakage. 

TOPIC SEARCH (CLASSIFICATION) 
Using Bayes rule, and an assumption of independent, identically distributed unigrams48, we have the 

following Naïve Bayes simplification:  

𝑃[𝑡𝑜𝑝𝑖𝑐|𝑑𝑜𝑐] ≈
𝑃[𝑡𝑜𝑝𝑖𝑐]𝑃[𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠(𝑑𝑜𝑐) | 𝑡𝑜𝑝𝑖𝑐]

𝑃[𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠(𝑑𝑜𝑐)]
≈  
𝑃[𝑡𝑜𝑝𝑖𝑐]∏ 𝑃[𝑢|𝑡𝑜𝑝𝑖𝑐]𝑢∈𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠(𝑑𝑜𝑐)

∏ 𝑃[𝑢]𝑢∈𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠(𝑑𝑜𝑐)
  

Since the denominator is a constant given a document as evidence, it can be ignored when one is 

only interested in determining what the most likely topic is. Thus, the most likely 𝑡𝑜𝑝𝑖𝑐 given 𝑑𝑜𝑐 is: 

most likely topic given doc ≈ argmax
𝑡𝑜𝑝𝑖𝑐

{ 𝑃[𝑡𝑜𝑝𝑖𝑐] ∑ 𝑃[𝑢|𝑡𝑜𝑝𝑖𝑐]

𝑢∈𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠(𝑑𝑜𝑐)

} 

For example, one topic may be medical science. Operationally, sample unigrams from a medical 

science corpus to estimate 𝑃[𝑢|𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑠𝑐𝑖𝑒𝑛𝑐𝑒] and apply the 𝑎𝑟𝑔𝑚𝑎𝑥 formula. If 𝑃[𝑡𝑜𝑝𝑖𝑐] 

cannot be estimated, a uniform distribution may be assumed (i.e., remove it from the 𝑎𝑟𝑔𝑚𝑎𝑥 

formula). 

This approach to topic search is founded upon a rigorous mathematical formalism, and it 

demonstrably works in other information retrieval contexts, but Encrypted Search may pose new 

challenges to it.  

                                                           
48 If the secure index contains bigrams, Markov chains of order 𝑚 ≥  2 may be used to model the 

true underlying distribution for a given topic with greater accuracy. 
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LETTER N-GRAMS AND WORD N-GRAMS 
In our secure indexes, word unigrams and bigrams are atomic, indivisible units in the secure indexes. 

However, this is not necessarily the case. One could go in either direction, inserting larger units (e.g., 

trigrams) or smaller units (e.g., letter n-grams). 

If larger word n-grams (e.g., trigrams) are used, then more secure (i.e., no need to deconstruct a 

trigram phrase into two bigrams which may leak co-occurrence information) and more exact 

searching on larger phrases will be the result. 

If letter n-grams are used, then consider the string "hello world". If storing letter trigrams, then the 

following transformation takes place, where * denotes whitespace.       

𝑙𝑖𝑠𝑡[“ℎ𝑒𝑙𝑙𝑜 𝑤𝑜𝑟𝑙𝑑”] → 𝑠𝑒𝑡{"ℎ𝑒𝑙", "𝑒𝑙𝑙", "𝑙𝑙𝑜", "𝑙𝑜 ∗ ", "𝑜 ∗ 𝑤", " ∗ 𝑤𝑜", "𝑤𝑜𝑟", "𝑜𝑟𝑙", "𝑟𝑙𝑑"} 

To search for the word “hello”, check for the existence of "hel", "ell", and "llo" in the set. If all three 

letter trigrams exist, that word is said to exist. As in the biword model, false positives are possible. In 

addition, with letter n-grams partial word matches are automatically possible. For instance, if the 

user wishes to find any words matching “ello”, then simply check for the existence of “ell” and “llo”. 

In fact, any substring that is three characters or larger can be matched. 

LEARNING OPTIMAL PARAMETERS 
Encrypted Search benefits from an embarrassing amount of data from which to learn optimal 

parameters for any given scoring function. To learn optimal parameters, we need a training set of 

documents 𝐷𝑠𝑒𝑡 and a query set 𝑄𝑠𝑒𝑡. We construct a set of secure indexes 𝑆𝐼𝑠𝑒𝑡 for 𝐷𝑠𝑒𝑡, and then 

rank-order both 𝑆𝐼𝑠𝑒𝑡 and 𝐷𝑠𝑒𝑡 according to each 𝑞 ∈ 𝑄𝑠𝑒𝑡. Then, we calculate the mean average 

precision (MAP) for the rank-ordered output from 𝑆𝐼𝑠𝑒𝑡 using the rank-ordered output from 𝐷𝑠𝑒𝑡 as 

the 𝑡𝑟𝑢𝑒, canonical output. 

For instance, 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒 is a proximity scoring function has the following form: 

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒(𝑑, 𝑄) = ln (𝛼 + 𝛾 ∙ exp {−
𝛽𝑠

|𝑄′|𝜃
}), 

where 𝛼, 𝛾, 𝛽, and 𝜃 are tunable parameters. Thus, an example of an objective function to optimize 

is: 

argmax
𝛼,𝛾,𝛽,𝜃

MeanAveragePrecision(RankOrder(𝑆𝐼𝑠𝑒𝑡 ,𝑄𝑠𝑒𝑡), RankOrder(𝐷𝑠𝑒𝑡,𝑄𝑠𝑒𝑡)) 

Since training data is abundant (it can be automatically generated, as we have done for our 

experiments), the tunable parameters for each scoring function should be independently optimized 

using a supervised learning algorithm that maximizes the mean average precision over the specified 

argmax parameters. 

Note that this particular example is relatively straightforward, but more sophisticated techniques 

may be used to, for instance, avoid over-fitting on the training sets. Also, note that each secure 

index has many free  parameters, e.g., location uncertainty, false positive rate, and so forth. These 

may be included as tunable parameters in the argmax optimization as well. 
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CHAPTER VII 

CONCLUSIONS 

Our research contributes to Encrypted Search in a few different ways. We designed and 

implemented several different new types of secure indexes—PSIB, PSIP, PSIF, and PSIM—based on a 

probabilistic set we call the Perfect Hash Filter. 

On various metrics, we compared PSIB, PSIP, and PSIP to each other and to BSIB, a previously 

proposed secure index based on the popular Bloom filter probabilistic set. We compared them with 

respect to lag time, compression ratio, build time, load time, precision, recall, BM25, and MinDist*. 

On most benchmarks, the PSI-based secure indexes compared favorably to BSIB, especially with 

respect to lag time. Moreover, given the flexibility of the Perfect Hash Filter, we were able to use 

more sophisticated representations, like PSIP, which performed in some cases significantly better 

than both PSIB and BSIB in terms of accuracy and significantly better than BSIB in terms of lag time. 

Moreover, in PSIP location uncertainty is independent of every other observed output except 

MinDist*—e.g., location uncertainty is independent of compression ratio, build time, BM25, etc. 

This flexibility makes it possible to choose a location uncertainty independent of concerns over 

these other outputs, and thus the choice of a location uncertainty becomes exclusively a trade-off 

between location accuracy (e.g., MinDist* accuracy) and confidentiality—i.e., confidentiality and 

location accuracy are inversely proportional. However, it performed generally worse on the 

compression ratio metric, although suggestions for ways to significantly improve this outcome were 

discussed. 

We also explored the use of these standard information retrieval scoring techniques while paying 

close attention to confidentiality concerns. In general, we discovered that query privacy is greatly 

improved by using obfuscated queries and multiple secrets. Obfuscations had an insignificant impact 

on BM25 and MinDist*, and thus Encrypted Search is free to use obfuscations without significantly 

degrading relevancy of search results. However, obfuscations did significantly negatively affect 

Boolean search, e.g., if a user submits a search to find documents containing all of the terms in a 

query, and the query has obfuscations (fake terms), then very few documents (depending on the 

false positive rate) will both have the terms of interest to the user, and the obfuscated terms. 

Secrets, however, had no impact on the quality of search results, but they do degrade the 

compression ratio. 

Experimentally, higher rates of obfuscation did not necessarily improve query privacy. Indeed, there 

was a global optimum such that confidentiality becomes progressively worse as you move away 

from it in either direction. We speculate that this was due to the distribution of obfuscation terms 

(uniformly sampled) being significantly different than the distribution of real terms (Zipf). If we 

chose a distribution for obfuscations that more accurately resembled the distribution of real terms, 

we believe there would be no such sweet spot; the higher the obfuscation rate, the better. 

Including multiple secrets for each searchable atomic term (i.e., multiple trapdoors) also had a huge 

impact on query privacy. In this case, the more secrets there are, the stronger the confidentiality is 

(with respect to a simulated adversary using maximum likelihood attacks). However, there comes a 

point of diminishing returns in which the advantage of including one more secret is very unlikely to 

outweigh its cost in other respects, namely compression ratio. 
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Analytically, we also discovered that the location uncertainty should be quite large to preserve 

document confidentiality against an adversary, who has access to the raw contents of the secure 

index, employing jig-saw-like attacks. However, increasing the location uncertainty has a significant 

negative impact on MinDist* MAP accuracy49. In response to this insight, we designed and 

implemented the PSIM secure index, and suggested using it as a way to make any of the other 

secure indexes more sensitive to the MinDist* metric without revealing too much about the 

confidential document (i.e., the adversary would not have as much success with the proposed jig-

saw-like attacks against PSIM). 

While we did not perform any simulations of an adversary trying to compromise the confidentiality 

of secure indexes using such techniques, we did provide a detailed theoretical treatment to 

motivate experiments on secure index poisoning and high false positive rates. 

Increasing the false positive rate had little impact on compression ratio and only a small impact on 

BM25 and MinDist* MAP scores. However, increasing the false positive rate had a huge impact on 

precision, as expected. This expectation was one of the motivations for exploring the use of 

standard degree of relevancy scoring techniques for Encrypted Search—these scoring techniques 

seem to work well despite the presence of approximation errors and false positives when using 

secure indexes. 

Also, secure index poisoning, especially in the form of adding fake terms, encouragingly had little 

impact on BM25 MAP, MinDist* MAP, and precision, and only a modest impact on compression 

ratio. An Encrypted Search user is relatively free to poison a secure index to whatever desired level 

and still be justified in expecting good search performance in terms of accuracy and speed. 

                                                           
49 On top of that, PSIB and BSIB do not scale well to large numbers of blocks—which is the ratio of word count 
to location uncertainty—and thus it may not even be a reasonable option to use small location uncertainties 
(unless the documents are reasonably small). PSIP, as just discussed, does not possess this problem. 
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