
Reliability Estimation in Series Systems: Maximum Likelihood
Techniques for Right-Censored and Masked Failure Data

Alex Towell
lex@metafunctor.com

2023-09-30

Abstract
This paper investigates maximum likelihood techniques to estimate component reliability from masked

failure data in series systems. A likelihood model accounts for right-censoring and candidate sets
indicative of masked failure causes. Extensive simulation studies assess the accuracy and precision of
maximum likelihood estimates under varying sample size, masking probability, and right-censoring time
for components with Weibull lifetimes. The studies specifically examine the accuracy and precision of
estimates, along with the coverage probability and width of BCa confidence intervals. Despite significant
masking and censoring, the maximum likelihood estimator demonstrates good overall performance. The
bootstrap yields correctly specified confidence intervals even for small sample sizes. Together, the modeling
framework and simulation studies provide rigorous validation of statistical learning from masked reliability
data.

Contents
1 Introduction 2

2 Series System Model 3
2.1 Component Cause of Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 System and Component Reliabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Likelihood Model for Masked Data 8
3.1 Masked Component Cause of Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Right-Censored Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Identifiability and Convergence Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Maximum Likelihood Estimation 13

5 Bias-Corrected and Accelerated Bootstrap Confidence Intervals 14

6 Series System with Weibull Components 15
6.1 Likelihood Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Weibull Series System: Homogeneous Shape Parameters . . . . . . . . . . . . . . . . . . . . . 18

7 Simulation Study: Series System with Weibull Components 19
7.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Data Generating Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3 Overview of Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.4 Scenario: Assessing the Impact of Right-Censoring . . . . . . . . . . . . . . . . . . . . . . . . 23
7.5 Scenario: Assessing the Impact of Masking Probability for Component Cause of Failure . . . 26
7.6 Scenario: Assessing the Impact of Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1

mailto:lex@metafunctor.com


8 Future Work 31

9 Conclusion 32

Appendices 32

A Series System with Weibull Component Lifetimes 32
A.1 Log-likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 Score Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.3 Quantile Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.4 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.5 Bernoulli Masking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B Simulation 35
B.1 Scenario Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.2 Plot Generation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Acknowledgements 39

1 Introduction
Quantifying the reliability of individual components in a series system [2] is challenging when only system-level
failure data is observable, especially when this data is masked by right-censoring and ambiguity about the
cause of failure. This paper develops and validates maximum likelihood techniques to estimate component
reliability from right-censored lifetimes and candidate sets indicative of masked failure causes. Specific
contributions include:

• Deriving a likelihood model that incorporates right-censoring and candidate sets to enable masked data
to be used for parameter estimation.

• Conducting simulation studies for a well-designed series system with component lifetimes following a
Weibull distribution. We assess the accuracy and precision of maximum likelihood estimates (MLE)
under varying conditions related to sample size, masking probability, and right-censoring. We found
that the MLE performs well in the presence of significant masking and censoring even for relatively
small samples.

• Evaluating the coverage probability (accuracy) and precision of the BCa confidence intervals (CI)
constructed for the MLE. We found that the CIs have good empirical coverage probability even for
small sample sizes in the presence of significant masking and censoring, but that the CIs for the shape
parameters were less accurate, indicating that the shape parameters are more difficult to estimate than
the scale parameters.

The simulation studies focus on three key aspects:

1. The impact of right-censoring on component parameter estimates.
2. How masking probability for the cause of failure affects the estimates.
3. The role of sample size in mitigating challenges related to censoring and masking.

Together, the likelihood framework and simulation methodology enable rigorous validation of inferring
component reliability from masked system data. This expands the capability to learn properties of the latent
components and perform robust statistical inference given significant data challenges.
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2 Series System Model
Consider a system composed of m components arranged in a series configuration. Each component and
system has two possible states, functioning or failed. We have n systems whose lifetimes are independent and
identically distributed (i.i.d.). The lifetime of the ith system is denoted by the random variable Ti and the
lifetime of its jth component is denoted by the random variable Tij . We assume the component lifetimes in
a single system are statistically independent and non-identically distributed. Here, lifetime (or lifespan) is
defined as the elapsed time from when the new, functioning component (or system) is put into operation
until it fails for the first time. A series system fails when any component fails, thus the lifetime of the ith

system is given by the component with the shortest lifetime,

Ti = min
{

Ti1, Ti2, . . . , Tim

}
.

There are three particularly important distribution functions in reliability analysis: the reliability function,
the probability density function (pdf), and the hazard function. The reliability function, RTi

(t), is the
probability that the ith system has a lifetime greater than the given duration t,

RTi
(t) = Pr{Ti > t}. (1)

The pdf of Ti is denoted by fTi
(t) and may be defined as

fTi
(t) = − d

dt
RTi

(t).

Next, we introduce the hazard function. The probability that a failure occurs between the times t and t + ∆t
given that no failure occurs before time t may be written as

Pr{Ti ≤ t + ∆t|Ti > t} = Pr{t < Ti < t + ∆t}
Pr{Ti > t}

.

The failure rate is given by dividing this equation by the length of the time interval, ∆t:

Pr{t < Ti < t + ∆t}
∆t

1
Pr{Ti > t}

= −RTi
(t + ∆t) − RTi

(t)
∆t

1
RTi(t)

.

The hazard function hTi
(t) for Ti is the instantaneous failure rate at time t, which is given by

hTi
(t) = − lim

∆t→0

RTi(t + ∆t) − RTi(t)
∆t

1
RTi

(t)

=
(

− d

dt
RTi

(t)
)

1
RTi

(t) = fTi
(t)

RTi
(t) .

(2)

The lifetime of the jth component is assumed to follow a parametric distribution indexed by a parameter
vector θj . The parameter vector of the overall system is defined as

θ = (θ1, . . . , θm),

where θj is the parameter vector of the jth component.
When a random variable X is parameterized by a particular θ, we denote the reliability function by

RX(t; θ), and the same for the other distribution functions. As a special case, for the components in a series
system, we subscript by their labels, e.g, the pdf of the jth component is denoted by fj(t; θj). Two continuous
random variables X and Y have a joint pdf fX,Y (x, y). Given the joint pdf fX,Y (x, y), the marginal pdf of
X is given by

fX(x) =
∫

Y
fX,Y (x, y)dy,

where Y is the support of Y . (If Y is discrete, replace the integration with a summation over Y.)
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The conditional pdf of Y given X = x, fY |X(y|x), is defined as

fX|Y (y|x) = fX,Y (x, y)
fX(x) .

We may generalize all of the above to more than two random variables, e.g., the joint pdf of X1, . . . , Xm is
denoted by f(x1, . . . , xm).

Next, we dive deeper into these concepts and provide mathematical derivations for the reliability function,
the pdf, and the hazard function of the series system. We begin with the reliability function of the series
system, as given by the following theorem.

Theorem 2.1. The series system has a reliability function given by

RTi
(t; θ) =

m∏
j=1

Rj(t; θj), (3)

where Rj(t; θj) is the reliability function of the jth component.

Proof. The reliability function is defined as

RTi(t; θ) = Pr{Ti > t}

which may be rewritten as
RTi(t; θ) = Pr{min{Ti1, . . . , Tim} > t}.

For the minimum to be larger than t, every component must be larger than t,

RTi
(t; θ) = Pr{Ti1 > t, . . . , Tim > t}.

Since the component lifetimes are independent, by the product rule the above may be rewritten as

RTi
(t; θ) = Pr{Ti1 > t} × · · · × Pr{Tim > t}.

By definition, Rj(t; θ) = Pr{Tij > t}. Performing this substitution obtains the result

RTi
(t; θ) =

m∏
j=1

Rj(t; θj).

Theorem 2.1 shows that the system’s overall reliability is the product of the reliabilities of its individual
components. This is an important relationship in all series systems and will be used in the subsequent
derivations. Next, we turn our attention to the pdf of the system lifetime, described in the following theorem.

Theorem 2.2. The series system has a pdf given by

fTi
(t; θ) =

m∑
j=1

fj(t; θj)
m∏

k=1
k ̸=j

Rk(t; θj), (4)

where fj(t; θj) is the pdf of the jth component and Rk(t; θk) is the reliability function of the kth component.

Proof. By definition, the pdf may be written as

fTi(t; θ) = − d

dt

m∏
j=1

Rj(t; θj).
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By the product rule, this may be rewritten as

fTi(t; θ) = − d

dt
R1(t; θ1)

m∏
j=2

Rj(t; θj) − R1(t; θ1) d

dt

m∏
j=2

Rj(t; θj)

= f1(t; θ)
m∏

j=2
Rj(t; θj) − R1(t; θ1) d

dt

m∏
j=2

Rj(t; θj).

Recursively applying the product rule m − 1 times results in

fTi
(t; θ) =

m−1∑
j=1

fj(t; θj)
m∏

k=1
k ̸=j

Rk(t; θk) −
m−1∏
j=1

Rj(t; θj) d

dt
Rm(t; θm),

which simplifies to

fTi(t; θ) =
m∑

j=1
fj(t; θj)

m∏
k=1
k ̸=j

Rk(t; θk).

Theorem 2.2 shows the pdf of the system lifetime is a function of the pdfs and reliabilities of its components.
We continue with the hazard function of the system lifetime, defined in the next theorem.
Theorem 2.3. The series system has a hazard function given by

hTi
(t; θ) =

m∑
j=1

hj(t; θj), (5)

where hj(t; θj) is the hazard function of the jth component.
Proof. By Equation (2), the ith series system lifetime has a hazard function defined as

hTi
(t; θ) = fTi

(t; θ)
RTi

(t; θ) .

Plugging in expressions for these functions results in

hTi
(t; θ) =

∑m
j=1 fj(t; θj)

∏m
k=1
k ̸=j

Rk(t; θk)∏m
j=1 Rj(t; θj)

,

which can be simplified to

hTi
(t; θ) =

m∑
j=1

fj(t; θj)
Rj(t; θj) =

m∑
j=1

hj(t; θj).

Theorem 2.3 reveals that the system’s hazard function is the sum of the hazard functions of its components.
By definition, the hazard function is the ratio of the pdf to the reliability function,

hTi(t; θ) = fTi(t; θ)
RTi

(t; θ) ,

and we can rearrange this to get
fTi

(t; θ) = hTi
(t; θ)RTi

(t; θ)

=
{ m∑

j=1
hj(t; θj)

}{ m∏
j=1

Rj(t; θj)
}

,
(6)

which we sometimes find to be a more convenient form than Equation (4).
In this section, we derived the mathematical forms for the system’s reliability, probability density, and

hazard functions. Next, we build upon these concepts to derive distributions related to the component cause
of failure.
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2.1 Component Cause of Failure
Whenever a series system fails, precisely one of the components is the cause. We denote the component cause
of failure of the ith series system by the discrete random variable Ki, whose support is given by {1, . . . , m}.
For example, Ki = j indicates that the component indexed by j failed first, i.e.,

Tij < Tij′

for every j′ in the support of Ki except for j. Since we have series systems, Ki is unique.
The system lifetime and the component cause of failure has a joint distribution given by the following

theorem.

Theorem 2.4. The joint pdf of the component cause of failure Ki and the series system lifetime Ti is given
by

fKi,Ti
(j, t; θ) = hj(t; θj)

m∏
l=1

Rl(t; θl), (7)

where hl(t; θl) and Rl(t; θl) are respectively the hazard and reliability functions of the lth component.

Proof. Consider a series system with 3 components. By the assumption that component lifetimes are mutually
independent, the joint pdf of Ti1, Ti2, and Ti3 is given by

f(t1, t2, t3; θ) =
3∏

j=1
fj(tj ; θj),

where fj(tj ; θj) is the pdf of the jth component. The first component is the cause of failure at time t if
Ki = 1 and Ti = t, which may be rephrased as the likelihood that Ti1 = t, Ti2 > t, and Ti3 > t. Thus,

fKi,Ti(j, t; θ) =
∫ ∞

t

∫ ∞

t

f1(t; θ1)f2(t2; θ2)f3(t3; θ3)dt3dt2

=
∫ ∞

t

f1(t; θ1)f2(t2; θ2)R3(t; θ3)dt2

= f1(t; θ1)R2(t; θ2)R3(t1; θ3).

By definition, f1(t; θ1) = h1(t; θ1)R1(t; θ1), and when we make this substitution into the above expression
for fKi,Ti(j, t; θ), we obtain the result

fKi,Ti
(j, t; θ) = h1(t; θ1)

m∏
l=1

Rl(t; θl).

Generalizing this result completes the proof.

Theorem 2.4 shows that the joint pdf of the component cause of failure and system lifetime is a function
of the hazard functions and reliability functions of the components. This result will be used in Section 3 to
derive the likelihood function for the masked data.

The probability that the jth component is the cause of failure is given by the following theorem.

Theorem 2.5. The probability that the jth component is the cause of failure is given by

Pr{Ki = j} = Eθ

[
hj(Ti; θj)∑m
l=1 hl(Ti; θl)

]
, (8)

where Ki is the random variable denoting the component cause of failure of the ith system and Ti is the
random variable denoting the lifetime of the ith system.
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Proof. The probability the jth component is the cause of failure is given by marginalizing the joint pdf of Ki

and Ti over Ti,
Pr{Ki = j} =

∫ ∞

0
fKi,Ti

(j, t; θ)dt.

By Theorem 2.4, this is equivalent to

Pr{Ki = j} =
∫ ∞

0
hj(t; θj)RTi

(t; θ)dt

=
∫ ∞

0

(
hj(t; θj)
hTi

(t; θ)

)
fTi(t; θ)dt

= Eθ

[
hj(Ti; θj)∑m
l=1 hl(Ti; θl)

]
.

If we know the system failure time, then we can simplify the above expression for the probability that the
jth component is the cause of failure. This is given by the following theorem.

Theorem 2.6. The probability that the jth component is the cause of system failure given that we know the
system failure occurred at time ti is given by

Pr{Ki = j|Ti = ti} = hj(ti; θj)∑m
l=1 hl(ti; θl)

.

Proof. By the definition of conditional probability,

Pr{Ki = j|Ti = ti} = fKi,Ti(j, ti; θ)
fTi

(ti; θ)

= hj(ti; θj)RTi
(ti; θ)

fTi
(ti; θ) .

Since fTi
(ti; θ) = hTi

(ti; θ)RTi
(ti; θ), we make this substitution and simplify to obtain

Pr{Ki = j|Ti = ti} = hj(ti; θj)∑m
l=1 hl(ti; θl)

.

Theorems 2.5 and 2.6 are closely related and have similar forms. Theorem 2.6 can be seen as a special
case of Theorem 2.5.

2.2 System and Component Reliabilities
The reliability of a system is described by its reliability function, which denotes the probability that the
system is functioning at a given time, e.g., RTi

(t′; θ) denotes the probability that the ith system is functioning
at time t′. If we want a summary measure of the system’s reliability, a common measure is the mean time to
failure (MTTF), which is the expectation of the system lifetime,

MTTF = Eθ

[
Ti

]
, (9)

which if certain assumptions are satisfied1 is equivalent to the integration of the reliability function over
its support. While the MTTF provides a summary measure of reliability, it is not a complete description.

1Ti is non-negative and continuous, RTi
(t; θ) is a well-defined, continuous, and differential function for t > 0, and∫∞

0 RTi
(t; θ)dt converges.
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Depending on the failure characteristics, the MTTF can be misleading. For example, a system that has a
high likelihood of failing early in its life may still have a large MTTF if it is fat-tailed.2

The reliability of the components in the series system determines the reliability of the system. We denote
the MTTF of the jth component by MTTFj and, according to Theorem 2.5, the probability that the jth

component is the cause of failure is given by Pr{Ki = j}. In a well-designed series system, there are no
components that are much “weaker” than any of the others, e.g., they have similar MTTFs and probabilities
of being the component cause of failure. In this paper, we perform a sensitivity analysis of the MLE for a
well-designed series system.

3 Likelihood Model for Masked Data
We aim to estimate an unknown parameter, θ, using masked data. We consider two types of masking:
censoring of system failures and masking component causes of failure.

Censoring We generally encounter two types of censoring: the system failure is observed to occur
within some time interval, or the system failure is not observed but we know that it was functioning at least
until some point in time. The latter is known as right-censoring, which is the type of censoring we consider
in this paper.

Component Cause of Failure Masking In the case of masking the component cause of failure, we
may not know the precise component cause of failure, but we may have some indication. A common example
is when a diagnostician is able to isolate the cause of failure to a subset of the components. We call this
subset the candidate set.

Masked Data In this paper, each system i is put into operation and observed until either it fails or its
failure is right-censored after some duration τi, so we do not directly observe the system lifetime but rather
we observe the right-censored lifetime, Si, which is given by

Si = min{τi, Ti}. (10)

We also observe an event indicator, δi, which is given by

δi = 1Ti<τi , (11)

where 1condition is an indicator function that denotes 1 if the condition is true and 0 otherwise. Here, δi = 1
indicates the ith system’s failure was observed and δi = 0 indicates it was right-censored.3 If a system failure
event is observed (δi = 1), then we also observe a candidate set that contains the component cause of failure.
We denote the candidate set for the ith system by Ci, which is a subset of {1, . . . , m}.

In summary, the observed data is assumed to be i.i.d. and is given by D = {D1, . . . , Dn}, where each Di

contains the following elements:

• Si is the right-censored system lifetime of the ith system.

• δi is the event indicator for the ith system.

• Ci is the set of candidate component causes of failure for the ith system.

The masked data generation process is illustrated in Figure 1.
2A “fat-tailed” distribution refers to a probability distribution with tails that decay more slowly than those of the exponential

family, such as the case with the Weibull when its shape parameter is less than 1. This means that extreme values are more
likely to occur, and the distribution is more prone to “black swan” events or rare occurrences. In the context of reliability, a
fat-tailed distribution might imply a higher likelihood of unusually long lifetimes, which can skew measures like the MTTF. [13]

3In some likelihood models, there may be more than two possible values for δi, but in this paper, we only consider the case
where δi is binary. Future work could consider the case where δi is categorical by including more types of censoring events and
more types of component cause of failure masking.
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Ti

TimTi2Ti1

Ki Ci covariates

Si

τ
δi

Figure 1: This figure showcases a dependency graph of the generative model for Di = (Si, δi, Ci). The
elements in green are observed in the sample, while the elements in red are unobserved (latent). We see that
Ci is related to both the unobserved component lifetimes Ti1, . . . , Tim and other unknown and unobserved
covariates, like ambient temperature or the particular diagnostician who generated the candidate set. These
two complications for Ci are why we seek a way to construct a reduced likelihood function in later sections
that does not need to model the distribution of Ci.

An example of masked data D with a right-censoring time τ = 5 can be seen in Table 1 for a series system
with 3 components.

Table 1: Right-censored lifetime data with masked component cause of failure.

System Right-censored lifetime (Si) Event indicator (δi) Candidate set (Ci)
1 1.1 1 {1, 2}
2 1.3 1 {2}
4 2.6 1 {2, 3}
5 3.7 1 {1, 2, 3}
6 5 0 ∅
3 5 0 ∅

In our model, we assume the data is governed by a pdf, which is determined by a specific parameter,
represented as θ within the parameter space Ω. The joint pdf of the data D can be represented as follows:

f(D; θ) =
n∏

i=1
f(Di; θ) =

n∏
i=1

f(si, δi, ci; θ),

where si is the observed system lifetime, δi is the observed event indicator, and ci is the observed candidate
set of the ith system.

This joint pdf tells us how likely we are to observe the particular data, D, given the parameter θ. When
we keep the data constant and allow the parameter θ to vary, we obtain what is called the likelihood function
L, defined as

L(θ) =
n∏

i=1
Li(θ)

where
Li(θ) = f(Di; θ)

is the likelihood contribution of the ith system.
For each type of data, right-censored data and masked component cause of failure data, we will derive the

likelihood contribution Li, which refers to the part of the likelihood function that this particular piece of data
contributes to. We present the following theorem for the likelihood contribution model.
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Theorem 3.1. The likelihood contribution of the ith system is given by

Li(θ) ∝
m∏

j=1
Rj(si; θj)

(∑
j∈ci

hj(si; θj)
)δi

(12)

where δi = 0 indicates the ith system is right-censored at time si and δi = 1 indicates the ith system is observed
to have failed at time si with a component cause of failure potentially masked by the candidate set ci.

In the following subsections, we prove this result for each type of masked data, right-censored system
lifetime data (δi = 0) and masking of the component cause of failure (δi = 1).

3.1 Masked Component Cause of Failure
When a system failure occurs, two types of data are observed in our data model: the system’s lifetime and a
candidate set that is indicative of the component cause of failure without necessarily precisely identifying
the failed component. This kind of masking of the true cause of failure is especially prevalent in industrial
settings. We will revisit this idea with a real-world example to demonstrate its significance after introducing
some specific theoretical conditions.

The key goal of our analysis is to estimate the parameter θ, which maximizes the likelihood of the observed
data, and to estimate the precision and accuracy of this estimate using the Bootstrap method. To achieve
this, we first need to assess the joint distribution of the system’s continuous lifetime, Ti, and the discrete
candidate set, Ci, which can be written as

fTi,Ci
(ti, ci; θ) = fTi

(ti; θ) Prθ{Ci = ci|Ti = ti},

where fTi
(ti; θ) is the pdf of Ti and Prθ{Ci = ci|Ti = ti} is the conditional pmf of Ci given Ti = ti.

We assume the pdf fTi(ti; θ) is known, but we do not have knowledge of Prθ{Ci = ci|Ti = ti}, i.e., the
data generating process for candidate sets is unknown. However, it is critical that the masked data, Ci,
is correlated with the ith system. This way, the conditional distribution of Ci given Ti = ti may provide
information about θ, despite our statistical interest being primarily in the series system rather than the
candidate sets.

To make this problem tractable, we assume a set of conditions that make it unnecessary to estimate the
generative processes for candidate sets. The most important way in which Ci is correlated with the ith system
is given by assuming the following condition.
Condition 1. The candidate set Ci contains the index of the failed component, i.e.,

Prθ{Ki ∈ Ci} = 1,

where Ki is the random variable for the failed component index of the ith system.
Assuming Condition 1, Ci must contain the index of the failed component, but we can say little else

about what other component indices may appear in Ci. In order to derive the joint distribution of Ci and Ti

assuming Condition 1, we take the following approach. We notice that Ci and Ki are statistically dependent.
We denote the conditional pmf of Ci given Ti = ti and Ki = j as

Prθ{Ci = ci|Ti = ti, Ki = j}.

Even though Ki is not observable in our masked data model, we can still consider the joint distribution of
Ti, Ki, and Ci. By Theorem 2.4, the joint pdf of Ti and Ki is given by

fTi,Ki
(ti, j; θ) = hj(ti; θj)

m∏
l=1

Rl(ti; θl),

where hj(ti; θj) and Rj(si; θj) are respectively the hazard and reliability functions of the jth component.
Thus, the joint pdf of Ti, Ki, and Ci may be written as

fTi,Ki,Ci
(ti, j, ci; θ) = fTi,Ki

(ti, k; θ) Prθ{Ci = ci|Ti = ti, Ki = j}

= hj(ti; θj)
m∏

l=1
Rl(ti; θl) Prθ{Ci = ci|Ti = ti, Ki = j}.

(13)
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We are going to need the joint pdf of Ti and Ci, which may be obtained by summing over the support
{1, . . . , m} of Ki in Equation (13),

fTi,Ci
(ti, ci; θ) =

m∏
l=1

Rl(ti; θl)
m∑

j=1

{
hj(ti; θj) Prθ{Ci = ci|Ti = ti, Ki = j}

}
.

By Condition 1, Prθ{Ci = ci|Ti = ti, Ki = j} = 0 when Ki = j and j /∈ ci, and so we may rewrite the joint
pdf of Ti and Ci as

fTi,Ci
(ti, ci; θ) =

m∏
l=1

Rl(ti; θl)
∑
j∈ci

{
hj(ti; θj) Prθ{Ci = ci|Ti = ti, Ki = j}

}
. (14)

When we try to find an MLE of θ (see Section 4), we solve the simultaneous equations of the MLE
and choose a solution θ̂ that is a maximum for the likelihood function. When we do this, we find that θ̂
depends on the unknown conditional pmf Prθ{Ci = ci|Ti = ti, Ki = j}. So, we are motivated to seek out
more conditions (that approximately hold in realistic situations) whose MLEs are independent of the pmf
Prθ{Ci = ci|Ti = ti, Ki = j}.
Condition 2. Given an observed system failure time Ti = ti and candidate set ci, the probability of the
candidate set is the same when we condition on any component cause of failure in the candidate set. That is,

Prθ{Ci = ci|Ti = ti, Ki = j′} = Prθ{Ci = ci|Ti = ti, Ki = j}

for all j, j′ ∈ ci.
Assuming Conditions 1 and 2, Prθ{Ci = ci|Ti = ti, Ki = j} may be factored out of the summation in

Equation (14), and thus the joint pdf of Ti and Ci may be rewritten as

fTi,Ci
(ti, ci; θ) = Prθ{Ci = ci|Ti = ti, Ki = j′}

m∏
l=1

Rl(ti; θl)
∑
j∈ci

hj(ti; θj)

where j′ ∈ ci.
If Prθ{Ci = ci|Ti = ti, Ki = j′} is a function of θ, the MLEs are still dependent on the unknown

Prθ{Ci = ci|Ti = ti, Ki = j′}. This is a more tractable problem, but we are primarily interested in the
situation where we do not need to know or estimate Prθ{Ci = ci|Ti = ti, Ki = j′} to find an MLE of θ. The
last condition we assume achieves this result.
Condition 3. The masking probabilities conditioned on failure time Ti and component cause of failure Ki

are not functions of θ. In this case, the conditional probability of Ci given Ti = ti and Ki = j′ is denoted by

βi = Pr{Ci = ci|Ti = ti, Ki = j′},

where βi is not a function of θ.

Real-World Relevance

According to [9], many industrial problems feature masking due to time constraints and the high costs
associated with failure analysis. Crucially, these industrial scenarios often fulfill Conditions 1, 2, and 3,
reinforcing the applicability of the results presented in this paper.

To elucidate, let’s consider a diagnostic tool used for identifying failed components in an electronic device
comprising three critical components arranged in a series configuration. Two are on a common circuit board
(labeled 1 and 2), while the third (labeled 3) is separate. Our diagnostic tool isolates the failure to either
the circuit board or the individual component but does not differentiate between components 1 and 2 if the
failure is on the shared board. In this case, we have the following conditional probabilities for candidate sets:

Pr{Ci = ci|Ti = ti, Ki = j}


1 if ci = {1, 2} and j = 1 or j = 2,
1 if ci = {3} and j = 3,
0 otherwise.

Our diagnostic tool satisfies the conditions as follows:

11



• Condition 1: The candidate set ci always contains the failed component j. Our diagnostic tool is able
to isolate the failure to either the circuit board or the individual component, and so the candidate set
always contains the failed component.

• Condition 2: As we vary the cause of failure j, we see that the conditional probability of the given
candidate set ci is the same for all j ∈ ci. Our diagnostic tool cannot distinguish between components 1
and 2 if the shared circuit board is the cause of failure, and therefore the probability of the candidate
set is the same when we condition on either component 1 or 2 being the cause of failure.

• Condition 3: The probabilities associated with our diagnostic tool are fixed and do not depend on the
system parameter θ.

By emphasizing that these conditions hold both in a general industrial context and a specific real-world
example, the paper enhances its applicability and relevance to both theoreticians and practitioners.

Likelihood Contribution

When Conditions 1, 2, and 3 are satisfied, the joint pdf of Ti and Ci is given by

fTi,Ci(ti, ci; θ) = βi

m∏
l=1

Rl(ti; θl)
∑
j∈ci

hj(ti; θj).

When we fix the sample and allow θ to vary, we obtain the contribution to the likelihood L from the ith

observation when the system lifetime is exactly known (δi = 1) but the component cause of failure is masked
by a candidate set ci:

Li(θ) ∝
m∏

l=1
Rl(ti; θl)

∑
j∈ci

hj(ti; θj), (15)

where we dropped the factor βi since it is not a function of θ.4
To summarize this result, assuming Conditions 1, 2, and 3, if we observe an exact system failure time for

the ith system (δi = 1), but the component that failed is masked by a candidate set ci, then its likelihood
contribution is given by Equation (15).

3.2 Right-Censored Data
As described in Section 3, we observe realizations of (Si, δi, Ci) where Si = min{Ti, τi} is the right-censored
system lifetime, δi = 1Ti<τi is the event indicator, and Ci is the candidate set.

In the previous section, we discussed the likelihood contribution from an observation of a masked component
cause of failure, i.e., δi = 1. We now derive the likelihood contribution of a right-censored observation, δi = 0,
in our masked data model.
Theorem 3.2. The likelihood contribution of a right-censored observation (δi = 0) is given by

Li(θ) =
m∏

l=1
Rl(si; θl). (16)

Proof. When right-censoring occurs, then Si = τi = si, and we only know that Ti > si, and so we integrate
over all possible values that it may have obtained,

Li(θ) = Prθ{Ti > si}.

By definition, this is just the survival or reliability function of the series system evaluated at si,

Li(θ) = RTi
(si; θ) =

m∏
l=1

Rl(si; θl).

4When doing maximum likelihood estimation, we are interested in the parameter values that maximize the likelihood function.
Since βi is not a function of θ, it does not affect the location of the maximum of the likelihood function, and so we can drop it
from the likelihood function.
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When we combine the two likelihood contributions, we obtain the likelihood contribution for the ith

system shown in Theorem 3.1,

Li(θ) ∝

{∏m
l=1 Rl(si; θl) if δi = 0∏m
l=1 Rl(si; θl)

∑
j∈ci

hj(si; θj) if δi = 1.

We use this result in Section 4 to derive the maximum likelihood estimator (MLE) of θ.

3.3 Identifiability and Convergence Issues
In our likelihood model, masking and right-censoring can lead to issues related to identifiability and flat
likelihood regions. Identifiability refers to the unique mapping of the model parameters to the likelihood
function, and lack of identifiability can lead to multiple sets of parameters that explain the data equally well,
making inference about the true parameters challenging [12], while flat likelihood regions can complicate
convergence [16].

In our simulation study, we address these challenges in a pragmatic way. Specifically, failure to converge
to a solution within a maximum of 125 iterations is interpreted as evidence of the aforementioned issues,
leading to the discarding of the sample.5 However, in Section 5, where we discuss the bias-corrected and
accelerated (BCa) bootstrap method for constructing confidence intervals, we do not discard any resamples.
This strategy helps ensure the robustness of the results, while acknowledging the inherent complexities of
likelihood-based estimation in models characterized by masking and right-censoring. In our simulation study,
we report the convergence rates, and find that for most scenarios, the convergence rate is greater than 95%
(100% once the sample is sufficiently large).

4 Maximum Likelihood Estimation
In our analysis, we use maximum likelihood estimation (MLE) to estimate the series system parameter θ
from the masked data [3, 5]. The MLE finds parameter values that maximize the likelihood of the observed
data under the assumed model. A maximum likelihood estimate, θ̂, is a solution of

L(θ̂) = max
θ∈Ω

L(θ), (17)

where L(θ) is the likelihood function of the observed data. For computational efficiency and analytical
simplicity, we work with the log-likelihood function, denoted as ℓ(θ), instead of the likelihood function [5].

Theorem 4.1. The log-likelihood function, ℓ(θ), for our masked data model is the sum of the log-likelihoods
for each observation,

ℓ(θ) =
n∑

i=1
ℓi(θ), (18)

where ℓi(θ) is the log-likelihood contribution for the ith observation:

ℓi(θ) =
m∑

j=1
log Rj(si; θj) + δi log

(∑
j∈ci

hj(si; θj)
)

. (19)

Proof. The log-likelihood function is the logarithm of the likelihood function,

ℓ(θ) = log L(θ) = log
n∏

i=1
Li(θ) =

n∑
i=1

log Li(θ).

5The choice of 125 iterations was also made for practical reasons. Since we are generating millions of samples and trying to
find an MLE for each in our simulation study, if we did not limit the number of iterations, the simulation study would have
taken too long to run.
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Substituting Li(θ) from Equation (12), we consider these two cases of δi separately to obtain the result in
Theorem 4.1. Case 1: If the ith system is right-censored (δi = 0),

ℓi(θ) = log
m∏

l=1
Rl(si; θl) =

m∑
l=1

log Rl(si; θl).

Case 2: If the ith system’s component cause of failure is masked but the failure time is known (δi = 1),

ℓi(θ) =
m∑

l=1
log Rl(ti; θl) + log βi + log

(∑
j∈ci

hj(si; θj)
)

.

By Condition 3, we may discard the log βi term since it does not depend on θ, giving us the result

ℓi(θ) =
m∑

l=1
log Rl(si; θl) + log

(∑
j∈ci

hj(si; θj)
)

.

Combining these two cases gives us the result in Theorem 4.1.

The MLE, θ̂, is often found by solving a system of equations derived from setting the derivative of the
log-likelihood function to zero [3], i.e.,

∂

∂θj
ℓ(θ) = 0, (20)

for each component θj of the parameter θ. When there’s no closed-form solution, we resort to numerical
methods like the Newton-Raphson method.

Assuming some regularity conditions, such as the likelihood function being identifiable, the MLE has
many desirable asymptotic properties that underpin statistical inference, namely that it is an asymptotically
unbiased estimator of the parameter θ and it is normally distributed with a variance given by the inverse of
the Fisher Information Matrix (FIM) [5]. However, for smaller samples, these asymptotic properties may not
yield accurate approximations. We propose to use the bootstrap method to offer an empirical approach for
estimating the sampling distribution of the MLE, in particular for computing confidence intervals.

5 Bias-Corrected and Accelerated Bootstrap Confidence Intervals
We utilize the non-parametric bootstrap to estimate the sampling distribution of the MLE. In the non-
parametric bootstrap, we resample from the observed data with replacement to generate a bootstrap sample.
The MLE is then computed for the bootstrap sample. This process is repeated to generate numerous bootstrap
replicates of the MLE. The sampling distribution of the MLE is then estimated by the empirical distribution
of the bootstrap replicates of the MLE.

Our main focus is on generating confidence intervals for the MLE. The method we use to generate
confidence intervals is known as Bias-Corrected and Accelerated Bootstrap Confidence Intervals (BCa) [7],
which applies two corrections to the standard bootstrap method:

• Bias Correction: This adjusts for bias in the bootstrap distribution itself. This bias is measured as
the difference between the mean of the bootstrap distribution and the observed statistic. It works by
transforming the percentiles of the bootstrap distribution to correct for these issues.
This may be a useful adjustment in our case since we are dealing with small samples with two potential
sources of bias: right-censoring and masking component cause of failure.

• Acceleration: This adjusts for the rate of change of the statistic as a function of the true, unknown
parameter. This correction is important when the shape of the statistic’s distribution changes with
the true parameter. Since we have a number of different shape parameters, k1, . . . , km, we may expect
the shape of the distribution of the MLE to change as a function of the true parameter, making this
correction potentially useful.
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Correctly Specified Confidence Intervals Since we are primarily interested in generating confidence
intervals for small samples for a biased MLE, the BCa method is a reasonable choice for our simulation
study. In our simulation study, we evaluate the performance of the BCa confidence intervals by calculating
their coverage probability. A correctly specified 95% confidence interval contains the true parameter value
approximately 95% of the time in repeated sampling.

In this study, we consider a coverage probability above 90% to be satisfactory, as it offers a reasonable
trade-off between precision and reliability. A coverage probability below this would signify undue confidence
in the precision of the MLE. Conversely, a coverage probability near 100% may indicate excessively wide
intervals, thereby diminishing the precision of the MLE. Our objective is to construct confidence intervals
that are as narrow as possible while achieving good empirical coverage close to the nominal level of 95%.

Challenges While the bootstrap method provides a robust and flexible tool for statistical estimation,
its effectiveness can be influenced by many factors. A few of these factors are particularly relevant to our
study:

• Convergence: Instances of non-convergence in our bootstrap samples were observed, which can occur
when the estimation method, like the MLE used in our analysis, fails to converge due to the specifics of
the resampled data [5]. This issue can potentially introduce bias or reduce the effective sample size of
our bootstrap distribution.

• Small Samples: The bootstrap’s accuracy can be compromised with small sample sizes, as the method
relies on the Law of Large Numbers to approximate the true sampling distribution. For small samples,
the bootstrap resamples might not adequately represent the true variability in the data, leading to
inaccurate results [8].

• Masking: Our data involves right censoring and a masking of the component cause of failure when a
system failure is observed. These aspects can cause certain data points or trends to be underrepresented
or not represented at all in our data, introducing bias in the bootstrap distribution [11].

Despite these challenges, we found the bootstrap method useful in constructing correctly specified
confidence intervals.

6 Series System with Weibull Components
The Weibull distribution, introduced by Waloddi Weibull in 1937, has been instrumental in reliability analysis
due to its ability to model a wide range of failure behaviors. Reflecting on its utility, Weibull modestly noted
that it “[. . . ] may sometimes render good service.” [1] In the context of our study, we model a system as
originating from components with Weibull distributed lifetimes arranged in a series configuration, producing
a specific form of the likelihood model described in Section 3, which deals with challenges such as right
censoring and masked component cause of failure.

The jth component of the ith system has a lifetime distribution given by

Tij ∼ Weibull(kj , λj) for i = 1, . . . , n and j = 1, . . . , m,

where λj > 0 is the scale parameter and kj > 0 is the shape parameter. The jth component has a reliability
function, pdf, and hazard function given respectively by

Rj(t; λj , kj) = exp
{

−
(

t

λj

)kj
}

, (21)

fj(t; λj , kj) = kj

λj

(
t

λj

)kj−1
exp
{

−
(

t

λj

)kj
}

, (22)

hj(t; λj , kj) = kj

λj

(
t

λj

)kj−1
. (23)

The shape parameter of the Weibull distribution is of particular importance:
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• kj < 1 indicates infant mortality. An example of how this might arise is a result of defective components
being weeded out early, and the remaining components surviving for a much longer time.

• kj = 1 indicates random failures (independent of age). An example of how this might arise is a result of
random shocks to the system, but otherwise the system is age-independent.6

• kj > 1 indicates wear-out failures. An example of how this might arise is a result of components wearing
as they age.

We show that the lifetime of the series system composed of m Weibull components has a reliability, hazard,
and probability density functions given by the following theorem.

Theorem 6.1. The lifetime of a series system composed of m Weibull components has a reliability function,
hazard function, and pdf respectively given by

RTi
(t; θ) = exp

{
−

m∑
j=1

(
t

λj

)kj
}

, (24)

hTi
(t; θ) =

m∑
j=1

kj

λj

(
t

λj

)kj−1
, (25)

fTi
(t; θ) =

{ m∑
j=1

kj

λj

(
t

λj

)kj−1}
exp
{

−
m∑

j=1

( t

λj

)kj

}
, (26)

where θ = (k1, λ1, . . . , km, λm) is the parameter vector of the series system and θj = (kj , λj) is the parameter
vector of the jth component.

Proof. The proof for the reliability function follows from Theorem 2.1,

RTi(t; θ) =
m∏

j=1
Rj(t; λj , kj).

Plugging in the Weibull component reliability functions obtains the result

RTi
(t; θ) =

m∏
j=1

exp
{

−
(

t

λj

)kj
}

= exp
{

−
m∑

j=1

(
t

λj

)kj
}

.

The proof for the hazard function follows from Theorem 2.3,

hTi
(t; θ) =

m∑
j=1

hj(t; θj) =
m∑

j=1

kj

λj

(
t

λj

)kj−1
.

The proof for the pdf follows from Theorem 2.2. By definition,

fTi(t; θ) = hTi(t; θ)RTi(t; θ).

Plugging in the failure rate and reliability functions given respectively by Equations (24) and (25) completes
the proof.

In Section 2.2, we discussed the concept of reliability, with the MTTF being a common measure of
reliability. In the case of Weibull components, the MTTF of the jth component is given by

MTTFj = λjΓ
(

1 + 1
kj

)
, (27)

where Γ is the gamma function. We mentioned that the MTTF can sometimes be a poor measure of reliability,
e.g., the MTTF and the probability of failing early can both be large. The Weibull is a good example of this
phenomenon. If kj > 1, the lifetime distribution of the jth component is fat-tailed and it can exhibit both a
large MTTF and a high probability of failing early. The probability of component failure given by Equation
(8) is a particularly useful measure of component reliability relative to the other components in the system.

6The exponential distribution is a special case of the Weibull distribution when kj = 1.
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6.1 Likelihood Model
In Section 3, we discussed two separate kinds of likelihood contributions, masked component cause of failure
data (with exact system failure times) and right-censored data. The likelihood contribution of the ith system
is given by the following theorem.

Theorem 6.2. Let δi be an indicator variable that is 1 if the ith system fails and 0 (right-censored) otherwise.
Then the likelihood contribution of the ith system is given by

Li(θ) ∝


exp
{

−
∑m

j=1
(

ti

λj

)kj

}∑
j∈ci

kj

λj

(
ti

λj

)kj−1 if δi = 1,

exp
{

−
∑m

j=1
(

ti

λj

)kj

}
if δi = 0.

(28)

Proof. By Theorem 3.1, the likelihood contribution of the ith system is given by

Li(θ) ∝

{
RTi

(si; θ) if δi = 0
RTi(si; θ)

∑
j∈ci

hj(si; θj) if δi = 1.

By Equation (24), the system reliability function is given by

RTi
(ti; θ) = exp

{
−

m∑
j=1

(
ti

λj

)kj
}

,

where θ = (k1, λ1, . . . , km, λm) is the parameter vector and by Equation (23), the hazard function of the jth

component is given by

hj(ti; θj) = kj

λj

(
ti

λj

)kj−1
,

where θj = (kj , λj) is the parameter vector of the jth component. Plugging these into the likelihood
contribution function obtains the result.

Taking the log of the likelihood contribution function obtains the following result.

Corollary 6.1. The log-likelihood contribution of the ith system is given by

ℓi(θ) = −
m∑

j=1

(
ti

λj

)kj

+ δi log
(∑

j∈ci

kj

λj

(
ti

λj

)kj−1
)

(29)

where we drop any terms that do not depend on θ since they do not affect the MLE.

See Appendix A.1 for the R code that implements the log-likelihood function for the series system with
Weibull components.

We find an MLE by solving (20), i.e., a point θ̂ = (k̂1, λ̂1, . . . , k̂m, λ̂m) satisfying ∇θℓ(θ̂) = 0, where ∇θℓ
is the gradient of the log-likelihood function (score) with respect to θ. To solve this system of equations, we
use Newton-like methods, which sometimes require both the gradient and the Hessian of the log-likelihood
function. We analytically derive the score but we do not do the same for the Hessian of the log-likelihood
function. Our reasoning is based on the following two observations:

• The score function is relatively easy to derive, and it is useful to have for computing gradients efficiently
and accurately, which will be useful for accurately numerically approximating the Hessian of the
log-likelihood function.

• The Hessian is tedious and error prone to derive, and Newton-like methods often do not require the
Hessian to be explicitly computed.

The following theorem derives the score function.
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Theorem 6.3. The gradient of the log-likelihood contribution of the ith system is given by

∇ℓi(θ) =
(

∂ℓi(θ)
∂k1

,
∂ℓi(θ)
∂λ1

, · · · ,
∂ℓi(θ)
∂km

,
∂ℓi(θ)
∂λm

)′

, (30)

where
∂ℓi(θ)

∂kr
= −

(
ti

λr

)kr

log
(

ti

λr

)
+

1
ti

(
ti

λr

)kr
(
1 + kr log

(
ti

λr

))
∑

j∈ci

kj

λj

(
ti

λj

)kj−1 1δi=1∧r∈ci (31)

and
∂ℓi(θ)
∂λr

= kr

λr

(
ti

λr

)kr

−
(

kr

λr

)2( ti

λr

)kr−1∑
j∈ci

kj

λj

(
ti

λj

)kj−1 1δi=1∧r∈ci
. (32)

The result follows from taking the partial derivatives of the log-likelihood contribution of the ith system
given by Equation (28). It is a tedious calculation so the proof has been omitted, but the result has been
verified by using a very precise numerical approximation of the gradient.

By the linearity of differentiation, the gradient of a sum of functions is the sum of their gradients, and so
the score function conditioned on the entire sample is given by

∇ℓ(θ) =
n∑

i=1
∇ℓi(θ). (33)

6.2 Weibull Series System: Homogeneous Shape Parameters
In a series system, the system is only as reliable as its weakest link (weakest component). In a well-designed
series system, there is no single component that is much weaker than the others. In the case of components
with Weibull lifetimes, this implies the shape parameters are homogenous and the scale parameters are
homogenous. The shape parameters are particularly important since they determine the failure behavior of
the components.

When the shape parameters are homogenous, the lifetime of the series system with components that are
Weibull distributed is also Weibull distributed, as shown in the following theorem.

Theorem 6.4. If the shape parameters of the components are homogenous, then the lifetime series system
follows a Weibull distribution with a shape parameter k given by the identical shape parameters of the
components and a scale parameter λ given by

λ =
( m∑

j=1
λ−k

j

)−1/k

, (34)

where λj is the scale parameter of the jth component.

Proof. Given m Weibull lifetimes Ti1, . . . , Tim with the same shape parameter k and scale parameters
λ1, . . . , λm, the reliability function of the series system is given by

RTi
(t; θ) = exp

{
−

m∑
j=1

(
t

λj

)k}
.

To show that the series system lifetime is Weibull, we need to find a single scale parameter λ such that

RTi(t; θ) = exp
{

−
(

t

λ

)k}
,

which has the solution
λ = 1(

1
λk

1
+ . . . + 1

λk
m

) 1
k

.
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Theorem 6.5. If a series system has Weibull components with homogeneous shape parameters, the component
cause of failure is conditionally independent of the system failure time:

Pr{Ki = j|Ti = ti} = Pr{Ki = j} =
λ−k

j∑m
l=1 λ−k

l

.

Proof. By Theorem 2.6, the conditional probability of the jth component being the cause of failure given the
system failure time is given by

Pr{Ki = j|Ti = t} = fKi,Ti(j, t; θ)
fTi

(t; θ) = hj(t; k, λj)RTi(t; θ)
hTi

(t; θj)RTi
(t; θ)

= hj(t; k, λj)∑m
l=1 hl(t; k, λl)

=
k

λj

(
t

λj

)k−1∑m
l=1

k
λl

(
t

λl

)k−1 =

( 1
λj

)k∑m
l=1
( 1

λl

)k
.

According to the bias-variance trade-off, we expect the MLE of the homogenous model, which has m + 1
parameters (m being he number of components in the series system), to be more biased but have less variance
than the MLE of the full model, which has 2m parameters.

7 Simulation Study: Series System with Weibull Components
In this simulation study, we assess the sensitivity of the MLE and BCa confidence intervals to various
simulation scenarios for the likelihood model defined in Section 6. We begin by specifying the parameters of
the series system that will be the central object of our simulation study. We consider the data in [10], in
which they study the reliability of a series system with three components. They fit Weibull components in a
series configuration to the data, resulting in an MLE with shape and scale estimates given by the first three
components in Table 2. To make the model slightly more complex, we add two more components to this
series system, with shape and scale parameters given by the last two components in Table 2. We will refer to
this system as the base system.

In Section 2.2, we defined a well-designed series system as one that consists of components with similar
reliabilities, where we define reliability in three ways: the reliability function, MTTF, and probability that a
specific component will be the cause of failure (which is a measure of relative reliability of the components).
We will use these three measures of reliability to assess the base system. The base system defined in Table 2
satisfies this definition of being a well-designed system since there are no components that are significantly
less reliable than any of the others, component 1 being the most reliable and component 3 being the least
reliable.

The reliability function, unlike the other two measures of reliability, is not a summary statistic of reliability,
but is rather a function of time. Since most of our simulations have the right-censoring time set to the 82.5%
quantile of the series system, which we denote here by τ0.825, we can compare the reliability functions of
the components at this time. We see that the reliability of the components at this right-censoring time are
similar, with component 1 being the most reliable and component 3 being the least reliable. These results
are consistent with the previous analysis based on the MTTF and probability of component cause of failure
being similar.

The shape parameters for each component is larger than 1, which means each component has a failure
characteristic that is more wear-out than infant mortality. The system as a whole is therefore more likely to
fail due to wear-out failures than infant mortality. This too is consistent with a well-designed system.

Homogenous Shape Parameters The base system is a well-designed system, and so it is likely that the
likelihood model that assumes homogeneous shape parameters described in Section 6.2 would provide a good
fit to any data generated from this system. We performed a preliminary investigation into this by simulating
data from the base system, and deviations from the base system that make the system less well-designed,
and fitting the homogeneous model to the data. We found that the MLE of the homogeneous model was very
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Table 2: Weibull Components in Series Configuration

Shape (kj) Scale (λj) MTTFj Pr{Ki = j} Rj(τ0.825; kj , λj)
Component 1 1.2576 994.3661 924.869 0.169 0.744
Component 2 1.1635 908.9458 862.157 0.207 0.698
Component 3 1.1308 840.1141 803.564 0.234 0.667
Component 4 1.1802 940.1342 888.237 0.196 0.711
Component 5 1.2034 923.1631 867.748 0.195 0.711
Series System NA NA 222.884 NA 0.175

close to the true parameter values for slight deviations from the base system, but the MLE was biased for
larger deviations from the base system. This is consistent with the bias-variance trade-off, where the MLE of
the homogeneous model is more biased but has less variance than the MLE of the full model. We do not
explore this further in this simulation study, but it is an interesting avenue for future research.

7.1 Performance Metrics
In this section, we describe the measures we use to assess the performance of the MLE and the BCa confidence
intervals in our simulation study. We assess two important properties of the MLE for each simulation scenario:

• Accuracy (Bias): A pivotal metric is the proximity of the MLE’s expected value to the true parameter
value. Higher accuracy is demonstrated by a closer proximity. We estimate the accuracy in our
simulation study by plotting the mean of the MLE.

• Precision: Another essential measure is the variability of the MLE across samples. Higher precision is
demonstrated by smaller variability. We estimate this in our simulation study by plotting the quantiles
of the sampling distribution of the MLE.

In parallel, we assess the following properties of the BCa confidence intervals described in Section 5:

• Accuracy (Coverage Probability): In Section 5, we discussed the importance of the coverage
probability of the confidence intervals. The coverage probability is the proportion of the computed
confidence intervals that contain the true parameter values. Ideally, we would like the CIs to contain
the true parameter values around 95% of the time, which is the nominal coverage probability. In this
case, the CIs are said to be correctly specified, but we consider anything over 90% satisfactory.

• Precision: A useful measure of the precision of the confidence intervals are their widths. Narrower,
consistent intervals across samples indicate higher precision. We measure this in our simulation study
by plotting the median-aggregated CIs, where we aggregate the CIs by taking the medians of the upper
and lower bounds. This gives us a sense of the central tendency of the CIs. There is a trade-off between
accuracy and precision, where we want the CIs to be as narrow as possible with nominal coverage
probability.

If the confidence intervals are not accurate, then we cannot be sure that the intervals contain the true
parameters. If the confidence intervals are not precise, then there is significant uncertainty in the locations
of the true parameters. In either case, we cannot be confident in the results of the analysis, and we should
consider alternative methods for estimating the parameters of the series system. However, we will see that the
BCa confidence intervals are accurate and precise for most of the simulation scenarios we consider, providing
a reliable method for estimating the parameters of the series system.

Finally, we also consider the convergence rate of the MLE, discussed in Section 3.3. We take a convergence
rate less than 95% to be evidence that the MLE is not a robust or reliable estimator in these cases, due to
the insufficient information.

7.2 Data Generating Process
In this section, we describe the data generating process for our simulation studies. It consists of three parts:
the series system, the candidate set model, and the right-censoring model.
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Series System Lifetime We generate data from a series system with m = 5 components with Weibull
lifetimes. As described in Section 6, the jth component of the ith system has a lifetime distribution given by

Tij ∼ Weibull(kj , λj)

and the lifetime of the series system composed of m Weibull components is defined as

Ti = min{Ti1, . . . , Tim}.

To generate a data set, we first generate the m component failure times, by efficiently sampling from their
respective distributions, and we then set the failure time ti of the system to the minimum of the component
failure times.

Right-Censoring Model We employ a simple right-censoring model, where the right-censoring time is
fixed at some known value, e.g., an experiment is run for a fixed amount of time τ , and all systems that have
not failed by the end of the experiment are right-censored. The censoring time Si of the ith system is thus
given by

Si = min{Ti, τ}.

So, after we generate the system failure time Ti, we generate the censoring time Si by taking the minimum of
Ti and τ .

In the simulation study, we parameterize instead by a right-censoring quantile q for the series system,
where q is the proportion of systems that are expected to fail before the right-censoring time, denoted by τq.
This is given by

τq = F −1
Ti

(q; θ),

where F −1
Ti

is the inverse CDF of the series system. To solve for the right-censoring time τq of the series
system, we define a function g as

g(τq) = FTi(τq; θ) − q

and find its root using the Newton’s method. See Appendix A.3 for the R code that implements this procedure.
For instance, if q = 0.825 (which is what we set it to in some of simulation scenarios), then 82.5% of the

series systems are expected to fail before the corresponding right-censoring time τq and 17.5% of the systems
are expected to be right-censored.

Masking Model for Component Cause of Failure We must generate data that satisfies the masking
conditions described in Section 3.1. There are many ways to satisfy the masking conditions. We choose a
simple method, which we call the Bernoulli masking model. In this model, we satisfy Conditions 1, 2, and 3
by generating a candidate set ci for each system i as follows:

• If the jth component fails, it is deterministically placed in the candidate set. This satisfies Condition 1,
Pr{Ki ∈ Ci} = 1.

• For each of the m − 1 components that did not fail, we generate a Bernoulli random variable Xj with
probability p of being 1, where p is a fixed probability. If Xj = 1, the jth component is placed in the
candidate set, which satisfies Condition 3, since the Bernoulli random variables are not a function of θ.

• Condition 2 may be the least intuitive of the three conditions. It states that

Pr{Ci = ci|Ki = j, Ti = ti} = Pr{Ci = ci|Ki = j′, Ti = ti}

for all j, j′ ∈ ci. In words, this means that the probability of the candidate set Ci being equal to some
set ci is the same when conditioned on any component in ci being the cause of failure and the system
failure time ti. This is satisfied by the Bernoulli masking model since, first, it is independent of the
system failure time ti, and second, the probability that a non-failed component is in the candidate set
is fixed at some constant p for all components. To see this, consider the following example. Suppose
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we have a system with m = 3 components, and the first component is the cause of failure. Then the
probability of the candidate set being equal to some set ci is given by

Pr{Ci = ci|Ki = 1, Ti = ti} =


(1 − p)2 if ci = {1}
p(1 − p) if ci = {1, 2}
(1 − p)p if ci = {1, 3}
p2 if ci = {1, 2, 3},

(35)

where a non-failed component is in the candidate set with probability p and otherwise it is not placed
in the candidate set with probability 1 − p. Now, let’s change the component cause of failure to the
second component:

Pr{Ci = ci|Ki = 2, Ti = ti} =


(1 − p)2 if ci = {2}
p(1 − p) if ci = {1, 2}
(1 − p)p if ci = {2, 3}
p2 if ci = {1, 2, 3}.

(36)

The same pattern holds for the third component. We see that the probability of the candidate set being
equal to some set ci is the same for all components in that ci and for all system failure times ti, e.g., if
the probability that ci = {1, 2} is p(1 − p) when we condition in either component 1 or component 2
being the cause of failure, which satisfies Condition 2.
There are many more ways to satisfy the masking conditions, but we choose the Bernoulli masking
model because it is simple to understand and allows us to easily vary the masking probability p for our
simulation study.

See Appendix A.5 for the R code that implements this model.

7.3 Overview of Simulations
We define a simulation scenario to be some combination of n (sample size), p (masking probability in our
Bernoulli masking model), and q (right-censoring quantile). We are interested in choosing a small number of
scenarios that are representative of real-world scenarios and that are interesting to analyze. For how we run
a simulation scenario, see Appendix B.1, but here is an outline of the process:

1. Parameter Initialization: Fix a combination of simulation parameters to some value, and vary the
remaining parameters. For example, if we want to assess how the sampling distribution of the MLE
changes with respect to sample size, we might choose some particular values for p and q and then vary
the sample size n over the desired range.

2. Data Generation: Simulate R ≥ 300 datasets from the Data Generating Process (DGP) described in
Section 7.2.

3. MLE Computation: Compute an MLE for each of the R datasets.

4. Statistical Evaluation: For each of these R MLEs, compute some function of the MLE, like the BCa
confidence intervals. This will give us R statistics as a Monte-carlo estimate of the sampling distribution
of the statistic.

5. Distribution Property Estimation: Use the R statistics to estimate some property of the sampling
distribution of the statistic, e.g., the mean of the MLE or the coverage probability of the BCa confidence
intervals, with respect to the parameter we are varying in the scenario, e.g., assess how the coverage
probability of the BCa confidence intervals changes with respect to sample size.

In this study, we are focusing on three distinct scenarios. Section 7.4 explores how varying the right-
censoring affects the estimator with the masking and sample size fixed. Section 7.5 explores how varying the
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masking affects the estimator with the right-censoring and sample size fixed. Section 7.6 explores how varying
the sample size affects the estimator with the right-censoring and masking fixed. Each scenario aims to
provide insights into how these parameters influence the behavior of MLEs, which is crucial for understanding
their performance in real-world applications.

7.4 Scenario: Assessing the Impact of Right-Censoring
In this scenario, we use the well-designed series system described in Table 2 and we use the following simulation
scenario values:

• We vary the right-censoring quantile (q) from 60% to 100% (no right-censoring). We denote the
corresponding right-censoring time by τq.

• We fix the Bernoulli masking probability p to 21.5% based on estimates from masked data.7
• We fix the sample size n to 90, which is small enough to show the impact of right-censoring on the

MLE, but large enough to obtain reasonable convergence rates.

In Figure 2, we show the effect of right-censoring on the MLEs for the shape and scale parameters. The
top four plots only show the effect on the MLEs for the shape and scale parameters of components 1 and 3.
We chose these components because they are the most and least reliable components, respectively, and so we
expect them to be the most and least sensitive to right-censoring. The bottom two plots show the coverage
probabilities for all parameters.

7.4.1 Background

When a right-censoring event occurs, in order to increase the likelihood of the data, the MLE is nudged in
a direction that increases the probability of a right-censoring event at time τ , which is given by RTi

(t; θ),
representing a source of bias in the estimate.

To increase RTi
(τq), we move in the direction (gradient) of these partial derivatives. The partial derivatives

of RTi(τq) are given by

∂RTi
(τq)

∂λj
= RTi(τq; θ)

(
τ

λj

)kj kj

λj
,

∂RTi
(τq)

∂kj
= RTi

(τq; θ)
(

τ

λj

)kj

(log λj − log τq) ,

for j = 1, . . . , m. We see that these partial derivatives are related to the score of a right-censored likelihood
contribution in Theorem 6.3. Let us analyze the implications these partial derivatives have on the MLE:

• Effect of Increasing Right-Censoring Quantile: As the right-censoring quantile q increases (τq

increases), RTi
(τq; θ) decreases, reducing the impact of right-censoring on the MLE. This behavior is

evident in Figure 2.

• Positive Bias in Scale Parameters: The partial derivatives with respect to the scale parameters
are always positive. This means that right-censoring introduces a positive bias in the scale parameter
estimates, making right-censoring events more likely. The extent of this bias is related to the amount of
right-censoring (1 − q), as seen in Figure 2.

• Conditional Bias in Shape Parameters: The partial derivative with respect to the shape parameter
of the jth component, kj , is non-negative if λj ≥ τq and otherwise negative. In our well-designed series
system, the scale parameters are large compared to most of the right-censoring times τq, so the MLE
nudges the shape parameter estimates in a positive direction to increase the probability RTi

(τq) of a
right-censoring event at time τq. We see this in Figure 2, where the shape parameter estimates are
positively biased for most of the quantiles q.

7See ‘Table 2: Example Data for a Series System’ in [10] for details on the masked data.
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Figure 2: Right-Censoring Quantile (q) vs MLE (p = 0.215, n = 90)
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7.4.2 Key Observations

Coverage Probability (CP) The confidence intervals are generally correctly specified, obtaining
coverages above 90% for most of the parameters across the entire range of right-censoring quantiles, and they
are converging to the nominal 95% level as the right-censoring quantile increases. This suggests that the
bootstrapped CIs will contain the true value of the parameters with the specified confidence level with high
probability. The CIs are neither too wide nor too narrow.

However, the scale parameters are better calibrated than the shape parameters. The scale parameters are
consistently around the nominal 95% level for all right-censoring quantiles, but the shape parameters are
consistently less correctly specified, suggesting that the shape parameters are more difficult to estimate than
the scale parameters.

We also see that the coverage probabilities for k1 and λ1 generally have worse coverage than the other
parameters. This is likely due to the fact that component 1 is the most reliable component, and so it is less
likely to fail before the right-censoring time τq. This means that the likelihood contribution of component 1 is
less informative than the other components. Conversely, we see that k3 and λ3 generally have better coverage
than the other parameters. This is likely due to the fact that component 3 is the least reliable component,
and so it is more likely to fail before the right-censoring time. This means that the likelihood contribution of
component 3 is more informative than the other components in the presence of right-censoring.

Dispersion of MLEs The shaded regions representing the 95% probability range of the MLEs get
narrower as the right-censoring quantile increases. This is an indicator of the increased precision in the
estimates as more data is available due to decreased censoring.

We see that the dispersion of the MLEs for k1 and λ1 are much larger than the dispersion of the MLEs
for k3 and λ3. This is consistent with the previous analysis for the coverage probabilities.

Median-Aggregated CIs The median CI (vertical blue bars) decreases in length as the right-censoring
quantile increases. This suggests that the bootstrapped CIs become more consistent and centered around a
tighter range as the right-censoring quantile increases, while maintaining a good coverage probability. As
right-censoring events become less likely, the bootstrapped CIs gravitate closer to each other and the true
parameter values.

For small right-censoring quantiles, the CIs are quite large, which was necessary to maintain good coverage.
The estimator is sensitive to the data, and so the bootstrapped CIs are wide to account for this sensitivity
when the sample contains insufficient information due to censoring. Again, we see that the median-aggregated
CIs for k1 and λ1 are much wider than the median-aggregated CIs for k3 and λ3.

Bias of MLEs The red dashed line indicating the mean of MLEs initially is quite biased for the shape
parameters, but quickly diminishes to negligible levels as the right-censoring quantile increases. The bias for
the shape parameters never reach zero, but this is potentially due to masking.

The bias for the scale parameters is quite small and remains stable across different right-censoring quantiles,
suggesting that the scale MLEs are reasonably unbiased. It could be the case that masking or other factors
are counteracting the bias due to right-censoring.

Again, we see that the bias for k1 and λ1 is much greater than the bias for k3 and λ3, which is consistent
with the previous analysis.

Convergence Rate The convergence rate increases as the right-censoring quantile q increases. This
is consistent with the expectation that more censoring reduces the information in a sample, making the
likelihood function less informative and more difficult to identify the parameters that maximize it. We see
that the convergence rate is around 95% or greater for right-censoring quantiles q ≥ 0.7, but drops below
95% for q < 0.7.

7.4.3 Summary

In this scenario, we find that right-censoring significantly influences the MLEs of shape and scale parameters.
As the degree of right-censoring decreases, the precision of these estimates improves, and the bias in the
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shape parameters diminishes, although it never fully disappears, possibly due to masking effects. Additionally,
Bootstrapped (BCa) confidence intervals generally show good coverage probabilities, particularly for scale
parameters, and become more focused as right-censoring decreases. As expected, the estimates for the most
reliable component are more sensitive to right-censoring than the least reliable component. We also find that
the convergence rate of the MLE decreases as the degree of right-censoring increases, suggesting that the
MLE is less reliable in these cases.

These insights set the stage for the subsequent scenario on masking probability, where we will explore how
masking adds another layer of complexity to parameter estimation and how these effects might be mitigated.

7.5 Scenario: Assessing the Impact of Masking Probability for Component
Cause of Failure

In this scenario, we use the well-designed series system described in Table 2 and we use the following simulation
scenario values:

• We vary the Bernoulli masking probability p from 10% to 70%.8
• We fix the right-censoring quantile q to 82.5%, which means the probability of a right-censoring event is

17.5%. This is less than the masking probability, making the masking probability the dominant source
of uncertainty.

• We fix the sample size to n to 90, which is small enough to show the impact of masking on the MLE,
but large enough to obtain reasonable convergence rates.

In Figure 3, we show the effect of the masking probability p on the MLE for the shape and scale parameters.
The top four plots only show the effect on the MLE for the shape and scale parameters of components 1 and
3, since the rest demonstrated similar results. The bottom left plot shows the coverage probabilities for all
parameters and the bottom right plot shows the convergence rate of the MLE.

7.5.1 Background

Masking introduces a layer of complexity that is different from right-censoring. While right-censoring deals
with the uncertainty in the timing of failure, masking adds ambiguity in identifying which component actually
failed. In the Bernoulli masking model, the failed component is guaranteed to be in the candidate set and
each non-failed component is included with a probability p. This has the following implications on the MLE:

• Ambiguity: A higher p makes larger candidate sets more probable, making it less clear which parameter
estimates should be adjusted to make the data more likely in the MLE. This is particularly problematic
for components that are not the cause of failure, since the MLE will adjust their parameters to make
them more likely to be the cause of failure, which is not necessarily correct.

• Bias: In an ideal scenario, knowing which component failed would allow the MLE to make that
component’s failure more likely and a right-censoring effect would be applied to the non-failed components.
However, a larger masking probability p introduces uncertainty, causing the MLE to adjust the estimates
for the parameters of the non-failed components to be more likely to fail at the observed failure time
while simultaneously applying a right-censoring effect to the other components, including the failed
component. This introduces a bias similar to the bias introduced by right-censoring, and the greater
the masking probability p, the greater the bias.

• Precision: As the masking probability p increases, the likelihood function becomes less informative,
reducing the precision of the estimates.

8The probability that the component cause of failure is masked is the probability that at least one functional component will
be in the candidate set, which is given by 1 − (1 − p)m−1, where m denotes the number of components in the system and p is
the Bernoulli masking probability. So, for m = 5 and p ranges from 10% to 70%, the probability that the component cause of
failure is masked ranges from 34.4% to 99.2%.
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Figure 3: Component Cause of Failure Masking (p) vs MLE (q = 0.825, n = 90)
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7.5.2 Key Observations

Coverage Probability (CP) For the scale parameters, the 95% CI is correctly specified for Bernoulli
masking probabilities up to p = 0.7, which is quite significant, obtaining coverages over 90%. For the shape
parameters, the 95% CI is correctly specified for masking probabilities only up to p = 0.4, which is still large.
At p = 0.4, the coverage probability is around 90, but continues to drop after that point well below 90%.
This suggests that the shape parameters are more difficult to estimate than the scale parameters, which is
consistent with the previous scenario where we varied the amount of right-censoring.

The BCa confidence intervals are correctly specified for most realistic masking probabilities, constructing
CIs that are neither too wide nor too narrow, but when the masking is severe and the sample size is small,
one should take the CIs with a grain of salt.

Dispersion of MLEs The shaded regions representing the 95% quantile of the MLEs become wider
as the masking probability increases. This is an indicator of the decreased precision in the estimates when
provided with more ambiguous data about the component cause of failure.

Median-Aggregated CIs The median-aggregated CIs (vertical dark blue bars) show that the BCa
CIs are becoming more spread out as the masking probability increases. They are also asymmetric, with
the lower bound being more spread out than the upper-bound, which is consistent with the behavior of the
dispersion of the MLEs. The width of the CIs consistently increase as the masking probability increases,
which we intuitively expected given the increased uncertainty about the component cause of failure.

Bias of MLEs The mean of the MLE (red dashed lines) demonstrates a steadily increasing positive
bias as the masking probability increases. This is consistent with the expectation that the MLE will apply an
increasing right-censoring effect to the estimates as the masking probability increases.

Convergence Rate The convergence rate decreases as the Bernoulli masking probability p increases.
This is consistent with the expectation that a higher masking probability decreases the information the
sample contains about the parameters. We see that the convergence rate remains above 95% for masking
probabilities up to p = 0.4, but drops below 95% for p > 0.4. This is consistent with behavior of the CPs,
which drop below 90% for p > 0.4.

7.5.3 Summary

In this scenario, we examine the influence of masking probability p on the MLE, keeping the sample size
and right-censoring constant. As the masking probability increases, the precision of the MLEs decreases,
and the coverage probability of the CIs begins to drop. However, even at fairly significant Bernoulli masking
probabilities, particularly for the scale parameters, the CIs have good coverage. These observations highlight
the challenges of parameter estimation under varying degrees of masking and set the stage for the subsequent
scenario on sample size, which shows how increasing the sample size can mitigate the effects of both
right-censoring and masking.

7.6 Scenario: Assessing the Impact of Sample Size
In this scenario, we want to assess how the sample size can mitigate the affects of right-censoring and masking
previously discussed. We use the well-designed series system described in Table 2 and we use the following
simulation scenario values:

• We vary the sample size n from 50 (small sample size) to 500 (large sample size).
• We fix the right-censoring quantile q to 82.5%.
• We fix the masking probability p to 21.5%.

In Figure 4, we show the effect of the sample size n on the MLEs for the shape and scale parameters.
The top four plots only show the effect on the MLEs for the shape and scale parameters of components
1 and 3, component 1 being the most reliable component in the system and component 3 being the least
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reliable component. The bottom left plot shows the coverage probabilities of the confidence intervals for all
parameters and the bottom right plot shows the convergence rate of the MLE.

7.6.1 Key Observations

Coverage Probability (CP) The confidence intervals are correctly specified, obtaining coverages
above 90% for most of the parameters across the entire sample size range, and they are converging to the
nominal 95% level as the sample size increases. The BCa CIs contain the true value of the parameters with
the specified confidence level, and the CIs neither too wide nor too narrow.

However, as in the previous scenario where we varied the right-censoring amount, the scale parameters
have better coverage than the shape parameters. The scale parameters are consistently around the nominal
95% level for all sample sizes, but the shape parameters lag behind, suggesting that the shape parameters are
more difficult to estimate than the scale parameters.

Dispersion of MLEs The shaded regions representing the 95% quantile range of the MLEs become
more narrow as the sample size increases. This is an indicator of the increased precision in the estimates
when provided with more data.

We also see that the dispersion of the MLEs for k1 and λ1 are much larger than the dispersion of the
MLEs for k3 and λ3. This is consistent with the previous analysis in the right-censoring scenario.

Median-Aggregated CIs The median-aggregated CIs (vertical dark blue bars) show that the CIs are
becoming less spread out as the sample size increases, indicating that they are becoming more consistent and
centered around a tighter range while maintaining good coverage probability. The end result is that we can
construct more precise and accurate CIs with larger samples and thus we can make more confident inferences
about the true parameter value.

The estimator is quite sensitive to the data, and so the CIs are wide to account for this sensitivity when
the sample size is small and not necessarily representative of the true distribution.

We also observe that the upper bound of the CI is more spread out than the lower bound. This is
consistent with the behavior of the dispersion of the MLEs, which have a positive bias. Thus, the CIs are
accounting for this bias by being more spread out in the direction of the bias.

Bias of MLEs The mean of the MLE (red dashed lines) initially has a large positive bias, but diminishes
to negligible levels as the sample size increases. In the previous right-censoring scenario, the bias never reached
zero, but we see that in this scenario, at around a sample size of 250, the estimator is essentially unbiased,
suggesting that there is enough information in the sample to overcome the bias from the right-censoring
(q = 0.825) and masking (p = 0.215) effects.

Convergence Rate The convergence rate increases as the sample size n increases. This is consistent
with the expectation that more data provides more information about the parameters, making the likelihood
function more informative and easier to identify the parameters that maximize it. We see that the convergence
rate is 95% or greater for sample sizes n ≥ 100 given moderate right-censoring and masking. Given how
quickly the convergence rate increased, we anticipate that even for extreme censoring and masking, the
convergence rate would likely rapidly increase to over 95% as the sample size increases. However, for sample
sizes n < 100, at least for series systems with m = 5 components with Weibull lifetimes, the convergence rate
is low. For small samples, any estimates should be taken with a grain of salt.

7.6.2 Summary

In this scenario, we delve into the mitigating effects of sample size on the challenges identified in previous
scenarios concerning right-censoring and masking. The precision and accuracy of the MLE rapidly improves
with a bias approaching zero. This is consistent with statistical theory and suggests that increasing the
sample size can mitigate the effects of right-censoring and masking. The BCa CIs also narrow and become
more reliable (with coverage probabilities approaching the nominal 95% level) with larger samples, reinforcing
the role of sample size in achieving robust estimates.
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8 Future Work
This paper developed maximum likelihood techniques and simulation studies to estimate component reliability
from masked failure data in series systems. The key results were:

• The likelihood model enabled rigorous inference from masked data via right-censoring and candidate
sets.

• Despite masking and censoring, the MLE demonstrated accurate and robust performance in simulation
studies.

• BCa confidence intervals had good coverage probability even for small samples.
• Estimation of shape parameters was more challenging than scale parameters.

Building on these findings, next we consider promising areas for future work.

Relaxing Masking Conditions To further generalize the likelihood model, we can relax conditions 1, 2,
and 3 on the masking model. We could perform a sensitivity analysis to violations of these conditions, which
would provide insights into the robustness of the likelihood model, or we could develop alternative likelihood
models that are less stringent.

Deviations from Well-Designed Series Systems Assess the sensitivity of the estimator to deviations
from well-designed series systems, in which there are no components that are significantly more likely to
fail than others. We could vary the probabilities of component failure (while keeping the system reliability
constant) to assess how the estimator behaves when the system deviates from the well-designed system
criteria. We did some preliminary investigation of this, and we found that the estimator was quite sensitive
to deviations in system design.

Homogenous Shape Parameter Assess the trade-off between using the homogenous shape parameter
model and the full model. The homogenous shape parameter model assumes that the shape parameters
are equal, which is a simplification of the full model. We could assess the sensitivity of the estimator to
deviations in the homogenous shape parameter assumption. By the bias-variance trade-off, we expect that
the homogenous shape parameter model will have less variance but more bias than the full model.9 We did
some preliminary investigation of this, and we found that the homogenous shape parameter model worked
quite well for moderate masking and censoring when the true system was a reasonably well-designed series
system, and only had more bias than the full model when the sample size was extremely large.

Semi-Parametric Bootstrap We used the non-parametric bootstrap to construct confidence intervals,
but we could also investigate the semi-parametric bootstrap. In the semi-parametric bootstrap, instead of
resampling from the original data, we sample component lifetimes from the parametric distribution fitted to
the original data and sample candidate sets from the conditional empirical distribution of the candidate sets
in the original data. This is a compromise between the non-parametric bootstrap and the fully parametric
bootstrap.10

Regularization Methods Investigate regularization methods like data augmentation and penalized
likelihood to improve parameter estimates, in particular shape parameter estimates.

9The bias-variance trade-off is a fundamental trade-off in statistics that states that as the bias of an estimator decreases, its
variance increases, and vice versa. An estimator with more variance is more sensitive to the data, while an estimator with more
bias is less sensitive to the data. If the assumption of homogeneity is reasonable, then the bias can be quite small while the
variance is also small, potentially making the homogenous shape parameter model a good choice in such cases.

10The fully parametric bootstrap is not appropriate for our likelihood model because we do not assume a parametric form for
the distribution of the candidate sets.
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Extending the Likelihood Model with Predictors Our research is based on a general likelihood model.
A straightforward extension is to integrate predictors, allowing each observation’s hazard function to be
influenced by specific variables, such as in the Cox proportional hazards model [6], but any function that
satisfies the fundamental mathematical principles of a hazard function could be used. This would allow the
likelihood model to be more flexible and adaptable to a wider range of applications.

Bootstrapped Prediction Intervals In this paper, we applied the bootstrap method to construct
confidence intervals for the parameter θ, which generated correctly specified confidence intervals in our
simulation study. We could do a similar analysis for other statistics, in particular prediction intervals, which
are useful for predicting the reliability of a system or a component at a future time.

The current results provide a solid foundation for extensions like these that can further refine the methods
and expand their applicability. By leveraging the rigorous likelihood framework and simulation techniques
validated in this study, future work can continue advancing the capability for statistical learning from masked
reliability data.

9 Conclusion
This work presented maximum likelihood techniques to estimate component reliability from masked failure
data in series systems. The methods demonstrated accurate and robust performance despite significant
challenges introduced by masking and right-censoring.

Simulation studies revealed that for our well-designed series system with Weibull component lifetimes,
right-censoring and masking positively biased the estimates and the more reliable components were more
sensitive to these effects. Additionally, the shape parameters were more difficult to estimate than the scale
parameters. However, with sufficiently large sample sizes, these difficulties were overcome, suggesting enough
information existed in the data to mitigate censoring and masking effects.

Despite the challenges, the bootstrapped bias-corrected and accelerated confidence intervals were generally
correctly specified with good overall coverage probabilities, even for relatively small sample sizes. This
good empirical coverage demonstrates the reliability of these intervals for statistical inference, striking a
balance between precision and robustness. The modeling framework offers a statistically rigorous method for
estimating latent component properties based on limited observational data concerning system reliability. The
simulation studies validate these techniques and provide practical insights into their efficacy under diverse
real-world scenarios. This enhances our capacity for statistical learning from obscured system failure data.

Appendices

A Series System with Weibull Component Lifetimes
These functions are implemented in the R library wei.series.md.c1.c2.c3, which is available on GitHub at
github.com/queelius/wei.series.md.c1.c2.c3 [15]. They are for series systems with Weibull component
lifetimes with masked data described in Section 3. For clarity and brevity, we removed some of the functionality
and safeguards in the actual code, but we provide the full code in the R package.

A.1 Log-likelihood Function
The log-likelihood function is the sum of the log-likelihood contributions for each system. For our series
system with Weibull component lifetimes, we analytically derived the log-likelihood function in Theorem 6.2
and implemented it in the loglik_wei_series_md_c1_c2_c3 R function below.

#' Generates a log-likelihood function for a series system with Weibull
#' component lifetimes for masked data.
#'
#' @param df masked data frame
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#' @param theta parameter vector
#' @returns log-likelihood function
loglik_wei_series_md_c1_c2_c3 <- function(df, theta) {

n <- nrow(df)
C <- md_decode_matrix(df, "x")
m <- ncol(C)
delta <- df[["delta"]]
shapes <- theta[seq(1, length(theta), 2)]
scales <- theta[seq(2, length(theta), 2)]
t <- df[[lifetime]]
s <- 0
for (i in 1:n) {

s <- s - sum((t[i] / scales)ˆshapes)
if (delta[i]) {

s <- s + log(sum(shapes[C[i, ]] / scales[C[i, ]] *
(t[i] / scales[C[i, ]])ˆ(shapes[C[i, ]] - 1)))

}
}
return(s)

}

A.2 Score Function
The score function is the gradient of the log-likelihood function. For our series system with Weibull
component lifetimes, we analytically derived the score function in Theorem 6.3 and implemented it in the
score_wei_series_md_c1_c2_c3 R function below.

#' Computes the score function for a series system with Weibull component
#' lifetimes for masked data.
#'
#' @param df masked data frame
#' @param theta parameter vector
#' @returns score function
score_wei_series_md_c1_c2_c3 <- function(df, theta) {

n <- nrow(df)
C <- md_decode_matrix(df, "x")
m <- ncol(C)
delta <- df[["delta"]]
t <- df[[lifetime]]
shapes <- theta[seq(1, length(theta), 2)]
scales <- theta[seq(2, length(theta), 2)]
shapes.scr <- scales.scr <- rep(0, m)

for (i in 1:n) {
shapes.rt <- -(t[i] / scales)ˆshapes * log(t[i] / scales)
scales.rt <- (shapes / scales) * (t[i] / scales)ˆshapes
shapes.trm <- scales.trm <- rep(0, m)

if (delta[i]) {
c <- C[i, ]
denom <- sum(shapes[c] / scales[c] *

(t[i] / scales[c])ˆ(shapes[c] - 1))

shapes.num <- (t[i] / scales[c])ˆshapes[c] / t[i] *
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(1 + shapes[c] * log(t[i] / scales[c]))
shapes.trm[c] <- shapes.num / denom

scales.num <- (shapes[c] / scales[c])ˆ2 *
(t[i] / scales[c])ˆ(shapes[c] - 1)

scales.trm[c] <- scales.num / denom
}

shapes.scr <- shapes.scr + shapes.rt + shapes.trm
scales.scr <- scales.scr + scales.rt - scales.trm

}

scr <- rep(0, length(theta))
scr[seq(1, length(theta), 2)] <- shapes.scr
scr[seq(2, length(theta), 2)] <- scales.scr
return(scr)

}

A.3 Quantile Function
For our series system with Weibull component lifetimes, the quantile function is the inverse of the cdf FTi .
By definition, the quantile p for the strictly monotonically increasing cdf FTi is the value t that satisfies
FTi

(t; θ) − p = 0, and so we solve for t using Newton’s method, in which the kth iteration is given by

t(k+1) = t(k) − FTi
(t(k); θ) − p

fTi
(t(k); θ)

.

We have derived a slightly more efficient method in the qwei_series R function below.

#' Quantile function for a series system with Weibull component lifetimes.
#'
#' @param p quantile
#' @param shapes shape parameters
#' @param scales scale parameters
#' @returns p-th quantile
qwei_series <- function(p, shapes, scales) {

t0 <- 1
repeat {

t1 <- t0 - sum((t0 / scales)ˆshapes) + log(1 - p) /
sum(shapes * t0ˆ(shapes - 1) / scalesˆshapes)

if (abs(t1 - t0) < tol) {
break

}
t0 <- t1

}
return(t1)

}

A.4 Maximum Likelihood Estimation
We use the Newton-Raphson method for Maximum Likelihood Estimation (MLE) in a series system with
Weibull component lifetimes. Numerical optimization is carried out using R’s optim package and the
L-BFGS-B method [4]. This quasi-Newton method approximates the Hessian using the gradient of the
log-likelihood function (see Appendices A.1 and A.2). Bound constraints are applied to maintain positive
shape and scale parameters.
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#' L-BFGS-B solver for the series system with Weibull component lifetimes
#' given masked data.
#'
#' @param df masked data frame
#' @param theta0 initial guess
#' @return MLE solution
mle_lbfgsb_wei_series_md_c1_c2_c3 <- function(df, theta0) {

optim(theta0,
fn = function(theta) loglik_wei_series_md_c1_c2_c3(df,

theta[seq(1, length(theta), 2)], theta[seq(2, length(theta), 2)]),
gr = function(theta) score_wei_series_md_c1_c2_c3(df,

theta[seq(1, length(theta), 2)], theta[seq(2, length(theta), 2)]),
lower = rep(1e-9, length(theta0)),
method = "L-BFGS-B",
control = list(fnscale = -1, maxit = 125L))

}

A.5 Bernoulli Masking Model
In the Bernoulli masking model, the failed component is guaranteed to be in the candidate set and each
non-failed component is included with some fixed probability p.

#' Bernoulli masking model is a particular type of *uninformed* model.
#' Note that we do not generate candidate sets with this function. See
#' `md_cand_sampler` for that.
#'
#' @param df masked data frame.
#' @param p Bernoulli masking probability
#' @returns masked data frame with Bernoulli candidate set probabilities
md_bernoulli_cand_c1_c2_c3 <- function(df, p) {

n <- nrow(df)
p <- rep(p, length.out = n)
Tm <- md_decode_matrix(df, "t")
m <- ncol(Tm)
Q <- matrix(p, nrow = n, ncol = m)
Q[cbind(1:n, apply(Tm, 1, which.min))] <- 1
Q[!df[["delta"]], ] <- 0
df %>% bind_cols(md_encode_matrix(Q, prob))

}

B Simulation
This appendix showcases select Python and R code instrumental in generating this paper. The entire source
code can be found on GitHub: github.com/queelius/reliability-estimation-in-series-systems [14].
For clarity and brevity, certain functionalities and safeguards from the original code have been omitted.
However, the full, unedited code, as well as the methods to reproduce this paper, are available in the GitHub
repository.

B.1 Scenario Simulation
Below, you’ll find the R code for the Monte-Carlo simulation, tailored to run the scenarios discussed in
Section 7.
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# A function to simulate the effects of various parameters on the sampling
# distribution of the MLE
simulate_scenario <- function(

csv_file, # Destination file to save simulation results
N, # Vector of sample sizes
P, # Vector of masking probabilities
Q, # Vector of quantiles of the series system
R, # Number of simulation replicates
B, # Number of bootstrap samples
theta # True parameters for the Weibull distribution

) {
shapes <- theta[seq(1, length(theta), 2)]
scales <- theta[seq(2, length(theta), 2)]
m <- length(scales)
cname <- c("n", "p", "q", "tau", "B",

paste0("shape.", 1:m), paste0("scale.", 1:m),
paste0("shape.mle.", 1:m), paste0("scale.mle.", 1:m),
paste0("shape.lower.", 1:m), paste0("shape.upper.", 1:m),
paste0("scale.lower.", 1:m), paste0("scale.upper.", 1:m),
"convergence", "loglik")

for (n in N) {
for (p in P) {

for (q in Q) {
tau <- qwei_series(p = q, scales = scales, shapes = shapes)
for (iter in 1:R) {

df <- generate_guo_weibull_table_2_data(shapes, scales, n, p, tau)
sol <- mle_lbfgsb_wei_series_md_c1_c2_c3(theta0 = theta, df = df)

mle_solver <- function(df, i) {
mle_lbfgsb_wei_series_md_c1_c2_c3(theta0 = sol$par, df = df[i, ])

}
sol.boot <- boot::boot(df, mle_solver, R = B)
ci <- confint(mle_boot(sol.boot))

result <- c(n, p, q, tau, B, shapes, scales,
sol$par[seq(1, length(theta), 2)],
sol$par[seq(2, length(theta), 2)],
ci[seq(1, length(theta), 2), 1:2],
ci[seq(2, length(theta), 2), 1:2],
sol$convergence, sol$value)

result_df <- setNames(data.frame(t(result)), cname)
write.table(result_df, file = csv_file, sep = ",", append = TRUE)

}
}

}
}

}

For example, to run the simulation study for the effect of masking probability, we would run the following
code:
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source("sim-scenario.R")
library(wei.series.md.c1.c2.c3)
simulate_scenario(

theta = alex_weibull_series$theta, # the well-designed system
N = c(90L), # sample size
P = c(0.1, 0.215, 0.4, 0.55, 0.7), # vary masking probability
Q = c(0.825), # right-censoring quantile
R = 400L, B = 1000L,
max_iter = 125L, max_boot_iter = 125L,
n_cores = 2L, csv_file = "masking-prob-sim.csv",
ci_method = "bca", ci_level = .95)

Please see the GitHub repository for the full code, since the code as presented will not run without
supporting functions.

B.2 Plot Generation Code
The following Python code generates the plots for the simulation study, plot_cp for the coverage probabilities
and plot_mle for the the sampling distribution of the MLE, both with respect to some simulation parameter,
like sample size (n) or masking probability (p).

def plot_cp(data, x_col, x_col_label):
rel_cols = [x_col] + [f'shape.{i}' for i in range(1, 6)] + \

[f'scale.{i}' for i in range(1, 6)] + \
[f'shape.lower.{i}' for i in range(1, 6)] + \
[f'shape.upper.{i}' for i in range(1, 6)] + \
[f'scale.lower.{i}' for i in range(1, 6)] + \
[f'scale.upper.{i}' for i in range(1, 6)]

rel_data = data[rel_cols].copy()

def compute_coverage(row, j):
shape_in = row[f'shape.lower.{j}'] <= row[f'shape.{j}'] <= row[f'shape.upper.{j}']
scale_in = row[f'scale.lower.{j}'] <= row[f'scale.{j}'] <= row[f'scale.upper.{j}']
return pd.Series([shape_in, scale_in], index=[f'shape.cov.{j}', f'scale.cov.{j}'])

for j in range(1, 6):
rel_data[[f'shape.cov.{j}', f'scale.cov.{j}']] = \

rel_data.apply(lambda row: compute_coverage(row, j), axis=1)

cols.cov = [f'shape.cov.{j}' for j in range(1, 6)] + \
[f'scale.cov.{j}' for j in range(1, 6)]

cps = rel_data.groupby(x_col)[cols.cov].mean().reset_index()

# Mean coverage probabilities
mean_shape_cp = cps[[f'shape.cov.{j}' for j in range(1, 6)]].mean(axis=1)
mean_scale_cp = cps[[f'scale.cov.{j}' for j in range(1, 6)]].mean(axis=1)
cps['mean_shape_cp'] = mean_shape_cp
cps['mean_scale_cp'] = mean_scale_cp

plt.figure(figsize=[5, 4])
shape_cmap = plt.get_cmap('Blues')
scale_cmap = plt.get_cmap('Reds')

shape.ls = ['-', '--', '-.', ':', '-']
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shape.mk = ['o', 's', 'ˆ', 'x', 'D']

for j, color, ls, mk in zip(range(1, 6), \
shape_cmap(np.linspace(0.4, 1, 5)), shape.ls, shape.mk):

plt.plot(cps[x_col], cps[f'shape.cov.{j}'], label=f'$k_{j}$', \
color=color, linestyle=ls, marker=mk)

scale.ls = ['-', '--', '-.', ':', '-']
scale.mk = ['o', 's', 'ˆ', 'x', 'D']

for j, color, ls, mk in zip(range(1, 6), \
scale_cmap(np.linspace(0.4, 1, 5)), scale.ls, scale.mk):

plt.plot(cps[x_col], cps[f'scale.cov.{j}'], label=f'$\lambda_{j}$', \
color=color, linestyle=ls, marker=mk)

plt.plot(cps[x_col], cps['mean_shape_cp'], color='darkblue', linewidth=4, \
linestyle='-', label='$\\bar{k}$')

plt.plot(cps[x_col], cps['mean_scale_cp'], color='darkred', linewidth=4, \
linestyle='-', label='$\\bar{\lambda}$')

plt.axhline(y=0.95, color='green', linestyle='--', label='$95\\%$')
plt.axhline(y=0.90, color='red', linestyle='--', label='$90\\%$')
plt.xlabel(f'{x_col_label} (${x_col}$)')
plt.ylabel('Coverage Probability (CP)')
plt.gca().yaxis.set_major_formatter(

FuncFormatter(lambda y, _: '{:.2f}'.format(y)))
plt.title('Coverage Probabilities for Parameters')
plt.legend(loc='best', bbox_to_anchor=(1, 1))
plt.tight_layout()
plt.savefig(f'plot-{x_col}-vs-cp.pdf')

def plot_mle(raw_data, x_col, par, par_label, label, k=100, loc='upper left'):
ps = par.split('.')
par_low = f'{ps[0]}.lower.{ps[1]}'
par_up = f'{ps[0]}.upper.{ps[1]}'
par_mle = f'{ps[0]}.mle.{ps[1]}'
x_vals = sorted(raw_data[x_col].unique())

median_mles = []
true_vals = []
mean_mles = []
low_q = []
up_q = []
plt.figure(figsize=(4, 4))

for i, x in enumerate(x_vals):
data = raw_data[raw_data[x_col] == x]
low_med, up_med = np.percentile(

data[par_low], 50), np.percentile(data[par_up], 50)
mean_mle = data[par_mle].mean()
true_val = data[par].mean()
median_mle = data[par_mle].median()
mean_mles.append(mean_mle)
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median_mles.append(median_mle)
low_q.append(np.percentile(data[par_mle], 2.5))
up_q.append(np.percentile(data[par_mle], 97.5))
true_vals.append(true_val)

plt.vlines(i, low_med, up_med, color='blue',
label='Median 95% CI' if i == 0 else "")

plt.plot(i, mean_mle, 'ro', label='Mean MLE' if i == 0 else "")
plt.plot(i, median_mle, 'bo', label='Median MLE' if i == 0 else "")

plt.plot(np.arange(len(x_vals)), mean_mles, 'r--')
plt.plot(np.arange(len(x_vals)), median_mles, 'b--')
plt.plot(np.arange(len(x_vals)), true_vals,

'g-', label='True Value', linewidth=2)

plt.fill_between(np.arange(len(x_vals)), low_q, up_q,
color='blue', alpha=0.15, label='95% Quantile Range')

plt.xticks(np.arange(len(x_vals)), x_vals)
plt.xlabel(f'{label} (${x_col}$)')
plt.ylabel(f'Statistics for {par_label}')
plt.title(f'MLE for {par_label}')
plt.legend(loc=loc)

leg = plt.gca().get_legend()
for text in leg.get_texts():

plt.setp(text, fontsize='small')

plt.tight_layout(h_pad=4.0, w_pad=2.5)
plt.savefig(f'plot-{x_col}-vs-{par}-mle.pdf')

For example, to generate a plot of the coverage probabilities with respect to sample size (n) for the CSV
file data.csv, we would run the following code:

from plot_utils import plot_cp
import pandas as pd
plot_cp(pd.read_csv("data.csv"), 'n', 'Sample Size')

Please see the GitHub repository for the full code, since the code as presented will not run without
supporting functions.
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