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ABSTRACT 
This paper applies an approach of resilience engineering in 
studying how effective encrypted searches will be.  One of 
the concerns on encrypted searches is frequency attacks.  In 
frequency  attacks,  adversaries  guess  the  meaning  of  the 
encrypted words by observing a large number of encrypted 
words in search queries and mapping the encrypted words 
to  guessed  plain  text  words  using  their  known  histogram. 
Thus,  it  is  important  for  defenders  to  know  how  many 
encrypted  words  adversaries  need  to  observe  before  they 
correctly  guess  the  encrypted  words.    However,  doing  so 
takes long time for defenders because of the large volume 
of the encrypted words involved. We developed and 
evaluated  Moving  Average  Bootstrap  (MAB)  method  for 
estimating the number of encrypted words (N*) an 
adversary  needs  to  observe  before  an  adversary  correctly 
guesses a certain percentage of the observed words with a 
certain  confidence.  Our  experiments  indicate  that  MAB 
method lets defenders to estimate N* using only 5% of the 
time, compared to the cases without MAB.  Because of the 
significant reduction in the required time for estimating N*, 
MAB will contribute to the safety in encrypted searches. 

Categories and Subject Descriptors 
H.3.3  [Information  Systems]:  Information  Search 
and Retrieval - Information filtering; Relevance 
feedback; Search process;  
E.2 [Data]: Data Storage Presentations - Object 
representation; 

Keywords 
Encrypted searches, known-plaintext attacks, 
oblivious searches, bootstrap method, information 
retrieval, information security, resilience engineering 

1. Introduction 

As electric information systems have been our 
essential infrastructure in our society, the risk of 
unauthorized information leaks has been rising.  Such 
information leaks have become a serious issue since 
recent  popular  adoptions  of  cloud  computing  could 
end up  with social turmoil.  For example,  malicious 

activities  conducted  by  the  people  we  trust  most;
system  administrators  at  cloud  providers;  have  been 
threats  that  may  prevent  further  adoptions,  or  even 
the  death  of network-based  electronic  information 
systems, if we do not take proper actions against such 
crimes [1, 2, 3]. 

The essential challenge is a trade-off problem 
between privacy and usability of the data we deposit 
in remote systems, such as cloud servers. To resolve 
this trade-off problem, researchers invented a 
concept, called “encrypted search”.

A  term,  “encrypted  search”,  means  a  concept  that 
lets authorized users to investigate presence of 
specific words or phrases in a target data set, such as 
an  encrypted  document  or  a  database  table  where 
stored  data  is  encrypted  [4,  5,  6,  7,  8],  while  the 
contents, especially the meaning of the data, are 
hidden  from  any  unauthorized  personnel,  including 
the system administrators of a cloud server. 

Encrypted search is expected to bring us 
tremendous benefits in information security.  For 
example, encrypted search will enable us to perform 
oblivious searches in remote database systems.
Users  would be able to perform specific searches in 
remote  database  systems  or  search  engines,  such  as 
Google, without anyone, including their system 
administrators who usually have full access to all the 
queries issued by their users, knowing what words or 
phrases are searched. 

Despite its potentials, no encrypted search scheme 
theoretically guarantees perfect confidentiality.
There are many ways information may be leaked. For 
example, encrypted search queries use a substitution 
cipher  where  plain  text  words  are  substituted  with 
encrypted  counterparts  in  queries. This  causes  a 
major vulnerability in encrypted searches. 

A major known threat to encrypted search is 
frequency  analysis  (aka,  “spectral  analysis”)  attacks 
[9].  If adversaries can estimate the relative frequency 
of plain text words, then the most frequently 
occurring encrypted word probably maps to the most 
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frequently occurring plain text word, which is known 
as “known-plaintext attacks”. Adversaries look for a 
mapping that maximizes the likelihood of seeing 
those encrypted words under the estimated 
distribution.  

Adversaries may know that an encrypted document 
is  for  a  specific  purpose  and,  therefore,  they  may 
predict some terms or phrases to appear quite often in 
the document.  According to Piantadosi, the text 
frequency  distribution  of  words  in  most  documents 
follows Zipf distribution [10].  Adversaries utilize the 
expected frequency for guessing their plain text 
counterparts. These systems are at a risk of 
information leaks.   

We applied the bootstrap method in quantifying the 
level  of  accuracy  adversaries  can  achieve,  while  we 
face two major uncertainty factors: c  as we describe 
in Section 3, since the actual accuracy in adversary’s 
will fluctuate in unpredictable ways, it is not easy for 
the defender side to determine the level of accuracy 
adversaries  may  have  achieved  for  each  particular 
system, and d  observing a large number of samples 
(i.e.,  encrypted  words)  for  accurately  estimating  N*
takes time for defenders. 

To cope with the issues described above, we 
developed and evaluated a new method that 
accurately and efficiently estimates the  vulnerability 
by adversaries (how many encrypted words an 
adversary needs to observe to correctly map a certain 
number of encrypted words to those in plain text and 
how likely an adversary can achieve the goal). 

The rest of this paper is organized as follows.  In 
Section 2, we review the existing effort to encrypted 
searches.  There has not been much work that 
quantitatively analyzes the conditions for information 
leaks  by  frequency  attacks,  such  as  the  number  of 
encrypted words an adversary needs to observe for a 
certain accuracy and how likely it happens.  In 
Section 3, we introduce our moving average 
bootstrap (MAB) method to accurately and 
efficiently estimate the achievable accuracy for 
frequency  attacks  performed  by  adversaries.  In  the 
attacks,  adversaries’  accuracy  often  fluctuates  and 
adversaries  may  observe  potentially  a  large  number 
of  encrypted  words,  which  is  theoretically  infinity 
especially  if  adversaries  are  system  administrators.
In Section 4, we present our performance evaluations 
on the MAB method. Section 5 summarizes our 
contributions  and  planned  future  work,  followed  by 
the selected references. 

2. Related Work 

Boneh  proposed  a  method  to  let  a  third  party  to 
perform  searches  over  encrypted  e-mail  messages, 

called  public-key  encryption with keyword  search 
(PEKS)  [4].    Boneh  designed  PEKS  in  such  a  way 
that e-mail messages are encrypted by the public key 
of an e-mail receiver, while a third party, such as an 
e-mail server, to perform search for a particular word 
(e.g., “urgent”) in each encrypted message without all 
the raw  contents in  the encrypted e-mail exposed to 
the third party. The core of this method is trapdoors, 
which  are  a  hash  value  of  a  given  word  in  e-mails.
Each e-mail receiver creates trapdoors,  one for each 
target word and trapdoors are included in each 
encrypted e-mail message for searches on the 
encrypted e-mail messages. 

Li  extended  this  concept  to  allow  third  parties  to 
perform  encrypted searches that  allows  deviations 
from  exact  matching  to  target  encrypted  words  by 
enumerating multiple trapdoors, one for each 
expected deviation [5]. Cao [6], Sun [7], and Kamara 
[8] proposed to apply encrypted search to enhancing
security in cloud computing. 

Despite the potentials in the encrypted search 
schemes, risk of information  leaks  through guessing 
the searched  words has been  identified [11, 12, 13]. 
Byun [11], Yau [12], and Jeong [13] technically 
demonstrated that anyone who has access to 
encrypted data possibly map them to their plain text 
counterparts. 

Use of secure communication channels (e.g., SSL) 
will  be  effective  in  hiding  the  trapdoors  in  queries 
submitted by legitimate users from external 
adversaries, but use of secure communication 
channels still can not prevent frequency attacks from 
internal adversaries, such as malicious administrators, 
assuming  that  they  can  intercept  trapdoors  within  a 
local  host  computer,  by  installing  illegal  capturing 
tool or by tampering executables. 

Despite the threat from frequency attacks, there has 
not been much work that delves into quantified 
analyses on the conditions for when such information 
leaks exceed a tolerable risk level under various 
conditions. Rivain proposed a multivariate Gaussian 
random variable method to estimate the success rate 
in discovering secret keys under side-channel attacks 
[14]. Thillard proposed use of “confidence” for 
evaluating  the  effectiveness  in  side-channel  attacks 
[15]. Rivain and Thillard’s both proposed a solution 
against correlation attacks, but not against frequency 
attacks.  Correlation attacks are different from 
frequency attacks in that adversaries discover the 
encryption keys to deduce the plain texts in the 
former, while the latter induces the plain texts 
directly  from  the  observed  encrypted  words  without 
discovering their encryption keys. 
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3.  Moving Average Bootstrap (MAB) Method 

We applied the bootstrap method to efficiently 
estimate  how  vulnerable  encrypted  searches  will  be 
against frequency attacks especially when adversaries 
are expected to observe a large number of encrypted 
words for long period of time. Bootstrap is a method 
for statistical estimation of various properties on 
population, such as variance, by calculating the 
properties using only the limited number of samples 
that follow a distributed approximation [16].

We applied the bootstrap method for estimating the 
vulnerabilities to encrypted searches from adversaries 
under the following four assumptions. 
(i) Adversaries know, in advance, that an encrypted 

document is for a specific purpose and, therefore, 
they  predict  histograms  of  the  terms  or  phrases 
(thus,  their  objective  is  mainly  to  discover  who 
searched for what terms). 

(ii) Adversaries have access to every encrypted 
search query submitted by legitimate users. 

(iii) The  encrypted  search  keys  are encrypted  using 
word  cypher  instead  of  block  cypher  to  allow 
search engines to perform uni-gram searches for 
each search key. This class of attacks is known 
as cipher text-only attack (COA). 

(iv) Adversaries are stand-alone. They do not 
coordinate their frequency attacks.  Thus, each of 
them will see different sequence of samples (i.e., 
encrypted  words)  and  they  do  not  share  their 
histograms of their samples with other 
adversaries. This  assumption  is  for  simplifying 
our analyses on vulnerability on encrypted 
search, to be relaxed in our future work. 

To quantify the vulnerability to frequency attacks, 
we defined a term, “adversary’s accuracy”.  
Adversary accuracy (p*) is the ratio of the number of 
the  correctly  mapped  text  search  keys  to  that  of  the
total encrypted search keys observed by an adversary,
which is defined as:

adversary accuracy (p*) = G/n  (1) 

where: 
G = the number of the correctly mapped text 

search keys by an adversary 
n = the number of encrypted search keys observed 

by an adversary in a session of his frequency 
attack 

For  example,  for  the  first  sequence  of  encrypted 
words (the words in the following examples are 
shown as  non-encrypted  words to  make  its  meaning 
clear to the audience) in Figure 1 (i), n = 8 (a 
duplicated word, “world” is counted twice). 

“hello world this is Alex and wonderful world”
“hello Illinois this is Alex and I am fine” (ii)

(i)

Figure 1: two examples of sequences of words 

Assuming that  the following words in  the  first 
sequence (i) are correctly mapped to their plain 
words by an adversary: “hello”, “world”, “Alex” and 
“wonderful”, G = 4 and p* = 0.5 (= 4/8).  If another 
sequence  of  encrypted  words  (Figure  1  (ii))  follows 
the previous sequence (i), and if the following 
encrypted  words  are  correctly  mapped  to  their  plain 
texts  by  the  same  adversary:  “Illinois”,  “hello”,  and 
“Alex”, n = 17 and G = 7, resulting in p* # 0.412 ( #
7/17).

The primary challenge in accurately estimating the 
achieved accuracy is fluctuations in adversary 
accuracy. The inherent fluctuations in adversary 
accuracy will make accurately estimating the 
achievable  accuracy  difficult,  which  will  prohibits 
defenders  from  designing  information  systems  with 
an expected level of resilience against frequency 
attacks  on  encrypted  searches.    Thus,  we need  an
efficient  measure  of  accuracy  that  is  unaffected  by 
such fluctuations. 

Answering the above questions is important 
especially  for  defenders,  since  having  a  systematic 
method to accurately and efficiently estimate the 
achievable accuracy by adversaries in given 
conditions would allow them to design a system that 
has  a  specific  level  of  resilience  against  frequency 
attacks  on  encrypted  searches.    Such  a  method  will 
provide a foundation for the safety of our information 
systems  in  asking  security-related  critical  questions, 
such as, “would you be ok with someone only being 
able to read 70% of your private journal by a chance 
of 1%”? 

To cope with the expected fluctuations in adversary 
accuracy,  we  developed  a  new  estimation  method 
called moving average bootstrap (MAB) method.  
The proposed estimation method performs smoothing 
out of fluctuating adversary accuracy using the 
bootstrap method.   The new  method smooth out the 
fluctuation  curve  as  the  measure  for  the  adversary’s 
current accuracy using a moving average. 

The  primary  concern  in  the  proposed  estimation 
method is to answer the following question: when is 
the  risk  too  high  that  the  adversary  has  achieved  a 
certain level of accuracy? To quantitatively  find an 
answer for the question, we introduced a metric, the 
estimator for the minimum number of encrypted 
words an adversary needs to achieve a given 
accuracy level of p*, which is represented by N*.
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The  concept  of  “the  estimator  for  the  minimum 
number  of  encrypted  words  an  adversary  needs  to 
observe for achieving a  given accuracy level of  p*” 
for a specific attempt of frequency attack, which we 
represent  by  “n*”  (instead  of  “N*”)  is  visualized  in 
Figure  2.    Figure  2  shows  the  plots  of  adversary 
accuracy  estimated  by  an  adversary.    Mainly  due  to 
the randomness in each sequence of encrypted words 
an adversary observes, the adversary’s accuracy will 
fluctuate, causing some spikes in both  up and down 
ward (we marked one of such upward spikes as 
“fluke high point” in Figure 2), making the adversary 
unsure if he has achieved a target accuracy level (e.g., 
p* = 0.36 was applied to this example). However, if 
the adversary’s accuracy never goes below p* = 0.36 
after  a  certain number  of  the  observed  encrypted 
words, the adversary is sure that he has achieved the 
accuracy of 36%. We used a symbol, n*, to represent 
the number of the encrypted words. 

p* = 0.36
fluke high point

only at this point
does the adversary’s
accuracy never dips
below 36% 

n*

Figure 2: an example of plots of adversary accuracy 
(p*) for a session of frequency attack and fluctuations 
in the adversary accuracy 

It  is  expected  that  n*  value  will  be  different  for 
each  attempt  of  frequency  attack. If  three  different 
adversaries perform their own frequency attack to the 
same  target  data  set,  their  n*  values  for  the  same 
accuracy level will be different even if they observed 
the  same  number  of  encrypted  words  for  the  same 
data set just because the sequences of the encrypted 
words  observed  in  each  attempt  will  be  different. 
Thus, one particular value of  n*  will not be reliable 
enough.  As a result, we need to efficiently calculate 
“the estimator for the minimum number of encrypted 
search queries an adversary needs to achieve a given 
accuracy level of p*” with a reasonably high level of 
confidence, which is denoted by “N*”. To accurately 
and efficiently estimate N* from a limited number of 
observed  n*’s,  while  observed  adversary  accuracies 
fluctuate  in  unpredictable  manners,  we  applied  the 
bootstrap method. 

We applied the bootstrap method to calculating N*
when adversaries can logically perform a large 
number  of  frequency  attack  sessions,  each  of  which 
lets  each  adversary  to  observe  a  large  number  of 
encrypted words.  To achieve the goals, we designed 
our bootstrap method using the following parameters: 
x n (the number of the encrypted words an 

adversary observes): legitimate users are expected 
to send search keys as encrypted words so that the 
search  engine  can  look  for  matching  words  over 
the  encrypted  words  stored  in  a  target  data  set.
The  n  encrypted  words  each  adversary  observes 
are assumed to be different for each adversary. 

x p* (a  level  of  accuracy  an  adversary  attempts  to 
achieve  (0.0  ≤  p*  ≤  1.0)):    when  p*  =  0.0,  an 
adversary does not successfully map any 
encrypted  word  to  its  correct  word  in  plain  text, 
while p* = 1.0 means that an adversary 
successfully  mapped  all  the  encrypted  words  he 
observed  to  the  correct  words  (thus,  p*  =  0.5 
means  the  half  of  the  observed  encrypted  words 
are mapped to the correct words in plain text). 

x n* (the minimum number of encrypted search 
queries an adversary needs to observe to achieve a 
given accuracy level of p*): it indicates the 
smallest value of n in such the way that an 
adversary  never  goes  below  the  given  accuracy 
level in an attempt of frequency attack (see Figure 
2 for its visualization).   Since it is impossible for 
testing  a  frequency  attack  on  an  infinitely  large 
number of n, we assume that 10 9 is large enough 
to  resemble  infinity  for  all  practical  purposes  if 
there was no increase in p* from n = 10 9 to n = 5 
u 109. 

x T (the probability an adversary achieves an given 
accuracy  level  of  p*  (0.0  ≤ T≤  1.0)):  when T=
0.5, 50% of adversaries, each of whom performed 
an attempt of frequency attack to the same target 
data  set,  will  achieve  the  given  accuracy  (i.e., 
successfully mapped (p* � 100)% of his observed 
encrypted  words  to  their  plain  counterparts)  by 
observing N* samples (i.e., encrypted words). T=
1.0 means every adversary achieves the given 
accuracy level, while T= 0.0 means no adversary 
achieves the given accuracy level. 

x k (conjectured sample size for population set): it is 
the number of frequency attack sessions (each of 
which produced its own n*) as our best estimation 
for an infinitely large number of frequency attack 
sessions. We  justified  our  selection  of  k  (k =
5,000) as follows.  As we showed in Figure 6 later 
in this paper, the 95% confidence interval for the 
population set was [6300, 7550] for p* = 0.30 and 
T  =  0.50.    We  repeated  the  experiments  (5,000 
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samples  for  our  approximation  of  the  population 
set) 10,000 times, resulting in a total of 50 million 
samples  to  produce  the  95%  confidence  interval 
of  1,250  (i.e.,  7,550  –  6,300).      The  interval  is 
relatively small for the 50 million samples, where 
their ratio is 0.000025 (i.e., 1,250/50,000,000). 

x m (the bootstrap sample size): it is the number of 
samples (i.e., n*’s) randomly selected from the set 
of  k n*’s  (m k). The  average  of  m n*’s  was 
calculated for a set of m n*’s.

x s (the number of the bootstrap rounds): it 
represents how many times calculating the 
average of m n*’s is repeated for a given value of 
p*.  We first randomly selected m n*’s.  Then, we 
calculated the average of the m n*’s.  Finally, we 
repeated this s times to calculate N*. 

Using  p*,  k, m, s, and T, the  following  is  the 
procedure  of  our  method  to  estimate  N*  using  the  
bootstrap method. We first randomly generated k
sessions of frequency attacks, which produced k n*’s
(i.e.,  each  session  of  frequency  attack  generated  a 
value  of  n*).  Then,  we  randomly  selected  m n*’s
from the set of k n*’s.  From the m n*’s, we 
randomly selected m n*’s, by repeating the following 
procedure m times: 

c  selected one n*’s from the pool of m n*’s 
d  put the selected n* back to the pool of k n*’s

When a set of m n*’s were selected, we calculated the 
average  of  the  m n*’s.    We  repeated  the  above  s
times,  producing  s  averages  of  m n*’s.  This  way, 
having  only  m  (mf )  samples  (i.e.,  m n*’s),  we 
will  be  able  to  efficiently  calculate  N*  for  a  large 
number  of  frequency  attack  sessions,  improving  the 
accuracy in estimating N* while it is tractable 
(estimating N* from f n*’s is not tractable).  Figure 
3 visualizes this concept. 

Population set of n*’s (infinite number of n*’s)

A set of randomly selected m n*’s (m << k)

One instance of n*

The base set of n* (k n*’s)  
Figure 3: Bootstrapping of m samples 

To calculate N* for a certain confidence level, after 
we calculated s averages of m n*’s, by first 
identifying  the  bottom  and  the  ceiling  for  the  95% 
interval in the following way.  We first ordered the s
averages  of  m n*’s  in  the  ascending  order,  as  n*[1]

through n* [s].  Then, the bottom and the ceiling of a 

certain  percentile  were  identified  so  that  confidence 
intervals (we applied 95%) were calculated by 
throwing out the bottom and top 2.5% of its sampling 
distribution (Figure 4) as: 

CI = mean{N*|p* = 0.36} r 2 � SE{N*|p* = 0.36} 

where “SE” means “Standard Error”.

s averages of m n*’s

Fr
eq

ue
nc

y

95% of s averages of m n*’s

D E

D: the bottom of 95% CI E: the ceiling of 95% CI

Figure 4: 95% confidence interval for the s averages 
of m n*’s 

We defined a term “ T quantile” (i.e., “0.05 
quantile”, if T= 0.05), to mean “( T�100) percentile”, 
which  is  the  n*[( T �  k)]  for  the  actual  distribution  and 
n*[( T � s)] for the empirical distributions. The term, “the 
actual distribution” means the distribution of the 
average of k n*’s, while “the empirical distribution” 
means the one of the s averages of m n*’s (using our 
bootstrap  method).  We  calculated  the  95%  CI  for 
each percentile we tested. 

Finally,  we  calculated  the  estimated  number  of 
encrypted  words  that  allow  an  adversary  to  achieve 
an  adversary  accuracy  of  p*  with  a  probability  of T
(i.e., “N*”) using the following formula:

N* = F-1( T| p*)

4. Performance Evaluation 

We  compared  the  performance  of  our  bootstrap 
method for estimating N* using only m samples with 
that of the ideal case (i.e., the one for representing the 
population  set), using  a  large  value  k,  which  will 
produce N* close to that for the f  sample size. For 
that  purpose,  we  compared  the  CDF’s  of  the  5th 
percentile  (i.e., T= 0.05)  for  the  actual  distribution 
and the empirical distribution. 

Figure  5  (a),  (b),  and  (c)  show  the  actual (the 
population set) and empirical CDF’s from our 
experiments  for  the  following  configuration:  p*  = 
0.30, T = 0.05, k = 5,000, and s = 10,000 for m = 50, 
100, and 250, respectively.  The experiments 
demonstrated the following observations.  For a small 
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sampling  size  (m  =  50),  the  actual  and  empirical 
sampling  distributions  are  nothing  alike.    As  m  (the 
bootstrap  sampling  size)  increases,  the  actual  and 
empirical sampling distributions quickly converge to 
the same shape.  At and after m = 500, no significant 
difference was observed between the two 
distributions. 

 
Figure 5 (a): The actual and empirical CDF’s of the 
5th percentile for m (bootstrap sample size) = 50 

 
Figure 5 (b): The actual and empirical CDF’s of the 
5th percentile for m = 100 

Figure 5 (c): The actual and empirical CDF’s of the 
5th percentile for m = 250 

We studied the effect of T to N* when we increased 
T from 0.01 to 0.50.  Our simulation experiments for 

the above analyses generated approximately 6GB of 
raw data, from which we made the following 
observations. 

Figure 6 shows the N*’s, as well as their lower and 
the upper 95% thresholds, for different levels of the 
probability ( T = 0.01 through 0.50) an adversary 
achieves  for  an  accuracy  level  of  p*  =  0.30.    The 
means between the bottom and ceiling of 95% CI (the 
crosshairs on the solid line) were calculated by taking 
the means of their sampling distribution. 

We  repeated  the  same  analyses  for  the  adversary 
accuracy  of  45  and  50%  (i.e.,  p*  =  0.45  and  0.50).  
This is a scenario in which an adversary can correctly 
map 45 and 50% of what the adversary observed by a 
5% chance ( T = 0.05), respectively. 

 
Figure 6: N* for different levels of the probability for 
T= 0.01  through  0.50  an  adversary  achieves  for  an 

adversary accuracy of p* = 0.30. 

 
Figure 7: N* for different levels of the probability for 
T  =  0.01  through  0.50  an  adversary  achieves  for  an 

accuracy level of p* = 0.45 and 0.50. 

Figure 7 shows the N*’s to achieve p* = 0.45 and 
0.5 at the probability of 5% ( T = 0.05). We estimated 
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the mean is around 19,100 observations (N* = 
19,100) for p* = 0.45. 

The followings are the observations from our 
experiments: 
x The proposed MAB method calculated the 

estimated  number  of  encrypted  search  queries  an 
adversary  needs  to  observe  (N*)  for  achieving  a 
given accuracy level, p* = 0.30, at the confidence 
level of 95% using only 5% of the actual 
observations (250/5000) (Figure 5 (c)). 

x For 5% chance that the adversary can read 30% of 
what the adversary observed (i.e., T = 0.05 for p* = 
0.3),  we  estimated  that  the  adversary  would  need 
around 6,900 observations (6,900 encrypted words,
N*  =  6,900).   The  95%  confidence  interval  of  all 
the  s  averages  of  m n*’s  was  [D:6,300, E:7,550] 
encrypted words when m = 500 (Figure 6).

x For comparison, for 30% accuracy (p* = 0.30), an 
adversary only needs around 5,000 encrypted 
words to be observed (N* = 5,000) (Figure 6).

x For  a  50%  chance  of  success  (i.e., T  =  0.50),  we 
observed that an adversary would need around 
17,000  observations  (N*  =  17,000)  for  50%  of 
success in  achieving p*  = 0.30  with  m  =  500 
(Figure 7). 

x For  45%  accuracy  (i.e.,  p*  =  0.45),  we  estimated 
that an adversary would need a sample size around 
360,000  (N*  =  360,000)  to  have  a  1%  chance  of 
success ( T = 0.01) (Figure 7). 

x For  50%  accuracy  (i.e.,  p*  =  0.50),  an  adversary 
would need around 1.3 million samples (N* = 1.3 �
106) (Figure 7). 

5. Conclusions and Future Work 

The  primary  contributions  in  this  paper  are  two-
folds.  First, there has not been much work for 
studying how safe encrypted searches are against 
frequency attacks, which can be measured by a large 
number of attackers for long period of time, possibly 
infinitely long. We provide  studies on the resilience 
of encrypted searches against frequency attacks from 
the view point of resilience engineering approach to 
enhance  security  on  encrypted  searches.    Resilience 
engineering  is  a  new  way  of  enhancing  safety  by 
precisely estimating the level of possible threats to a 
system  and  feeding  them  back  to  adjusting  or  re-
designing the system to maintain the acceptable level 
of safety [17].

Our  second  contribution  is  development  of  a  new 
method, Moving Average Bootstrap (MAB) method, 
which efficiently and accurately calculates the 
estimator for the minimum number of encrypted 
words  (N*)  an  adversary  needs  to  achieve  a  given 
accuracy level (p*) with a certain level of confidence 

as soon as a relatively small  number of samples (n) 
(i.e.,  encrypted  words)  are  submitted  by  legitimate 
users.  Thus, the MAB method will let the defenders 
calculate the estimator at an early stage without 
waiting  for  a  large  number  of  queries  submitted  by 
legitimate  users. Especially  from  the  view  point  of 
“tractability”,  calculating  the  estimator  using,  not  to 
mention an infinitely large number of encrypted 
words, a large number of encrypted words takes time 
(waiting for a large number of encrypted words to be 
submitted)  and  huge  storage  (storage  space  to  hold 
the submitted encrypted words) is required. 

Our proposed MAB method calculated the 
estimated number of encrypted search queries an 
adversary needs to observe (N*) for achieving a 
given  accuracy  level,  p*  =  0.30,  at  the  confidence 
level of 95% using only 5% of the actual 
observations (250/5000) (Figure 5 (c)). Assuming 
that  the  increase  in  the  time  an  adversary  needs  to 
achieve a certain p* is proportional to the ratio in the 
increase of the number of the encrypted words 
observed  by  an  adversary  (n)  for  a  large  number  of 
encrypted  words,  the  MAB  method  would  allow  a 
defender to estimate N* in 5% of time (without 
waiting for legitimate users to issue a large number of 
encrypted words). We are currently performing 
analyses using higher p* (0.55 through 0.80) for 
different levels of confidence (90 to 98%) for 
observing how they affect the performance of MAB 
method and for observing if there is any pathological 
case for MAB method. 
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